Formation of Vertically Oriented TiO2 Nanotube Arrays using a Fluoride Free HCl Aqueous Electrolyte

Described is the synthesis of TiO2 nanotube array thin films by anodization of Ti foil in an aqueous HCl electrolyte. This process represents an alternative electrolyte that can be utilized instead of fluoride-containing electrolytes. Nanotube arrays up to 300 nm in length, 15 nm inner pore diameter, and 10 nm wall thickness were obtained by using a 3 M HCl aqueous electrolyte for anodization potentials between 10 and 13 V. An anodization voltage of up to 20 V could be used if it was increased stepwise with a resulting nanotube length of approximately 600 nm; however, the resulting nanotubes are not as well-ordered as those fabricated by a constant anodization voltage. The addition of a low concentration of H3PO4 as a buffering medium in the concentration range 0.01−0.1 M expands the anodization voltage up to 14 V but the architectures formed more closely resemble rods than tubes.

[1]  Craig A Grimes,et al.  Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. , 2007, Nano letters.

[2]  V. K. Mahajan,et al.  Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode , 2007 .

[3]  Craig A. Grimes,et al.  A new benchmark for TiO2 nanotube array growth by anodization , 2007 .

[4]  Ronald J. Willey,et al.  Ultra‐High‐Aspect‐Ratio Titania Nanotubes , 2007 .

[5]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[6]  V. Teixeira,et al.  Iron-doped photocatalytic TiO2 sputtered coatings on plastics for self-cleaning applications , 2007 .

[7]  Craig A. Grimes,et al.  Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption , 2007 .

[8]  C. Grimes,et al.  Cation Effect on the Electrochemical Formation of Very High Aspect Ratio TiO2 Nanotube Arrays in Formamide−Water Mixtures , 2007 .

[9]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[10]  Craig A. Grimes,et al.  Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization , 2006 .

[11]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[12]  C. Grimes,et al.  Initial Studies on the Hydrogen Gas Sensing Properties of Highly-Ordered High Aspect Ratio TiO 2 Nanotube-Arrays 20 μ m to 222 μ m in Length , 2006 .

[13]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[14]  K. G. Ong,et al.  A Transcutaneous Hydrogen Sensor: From Design to Application , 2006 .

[15]  R. Newman,et al.  Evolution of current transients and morphology of metastable and stable pitting on stainless steel near the critical pitting temperature , 2006 .

[16]  Fumin Wang,et al.  Preparation of TiO2 nanocrystalline with 3–5 nm and application for dye-sensitized solar cell , 2006 .

[17]  Craig A. Grimes,et al.  Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements , 2006 .

[18]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[19]  K. G. Ong,et al.  Numerical simulation of light propagation through highly-ordered titania nanotube arrays: dimension optimization for improved photoabsorption. , 2005, Journal of nanoscience and nanotechnology.

[20]  Tejal A Desai,et al.  Nanoporous alumina capsules for cellular macroencapsulation: transport and biocompatibility. , 2005, Diabetes technology & therapeutics.

[21]  Krishnan S. Raja,et al.  Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium , 2005 .

[22]  Craig A. Grimes,et al.  Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films , 2005 .

[23]  Tejal A Desai,et al.  Influence of nanoporous alumina membranes on long-term osteoblast response. , 2005, Biomaterials.

[24]  Hiroki Habazaki,et al.  Nanoporous Anodic Niobium Oxide Formed in Phosphate/Glycerol Electrolyte , 2005 .

[25]  Tejal A Desai,et al.  Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion. , 2005, Biomaterials.

[26]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[27]  Craig A. Grimes,et al.  The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation , 2005 .

[28]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[29]  A. J. Frank,et al.  Electrons in nanostructured TiO2 solar cells: Transport, recombination and photovoltaic properties , 2004 .

[30]  Marta Radecka,et al.  TiO2 for photoelectrolytic decomposition of water , 2004 .

[31]  Craig A. Grimes,et al.  A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination , 2004 .

[32]  Craig A. Grimes,et al.  Fabrication of tapered, conical-shaped titania nanotubes , 2003 .

[33]  Craig A. Grimes,et al.  Fabrication of nanoporous tungsten oxide by galvanostatic anodization , 2003 .

[34]  Craig A. Grimes,et al.  A Sentinel Sensor Network for Hydrogen Sensing , 2003 .

[35]  Craig A. Grimes,et al.  Crystallization and high-temperature structural stability of titanium oxide nanotube arrays , 2003 .

[36]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[37]  T. Shobha,et al.  Anodization of hafnium in phosphate baths: Radio tracer studies , 2001 .

[38]  Marc Aucouturier,et al.  Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy , 1999 .

[39]  D. Macdonald On the Formation of Voids in Anodic Oxide Films on Aluminum , 1993 .

[40]  V. Parkhutik,et al.  Theoretical modelling of porous oxide growth on aluminium , 1992 .

[41]  F. Priem,et al.  On the anodic dissolution of titanium between 15°C and 100°C in deaerated 2 m hydrochloric acid , 1988 .

[42]  S. Marya,et al.  On the corrosion resistance of the submerged arc welded titanium in concentrated hydrochloric acid 8 N , 1983 .

[43]  A. Caprani,et al.  Anodic behaviour of titanium in acidic chloride containing media (HCl NaCl). Influence of the constituents of the medium—III. Analysis of the electrochemical impedance. General dissolution — passivation mechanism , 1982 .

[44]  E. Chassaing,et al.  Electrochemical behaviour of the titanium chlorides in various alkali chloride baths , 1979 .

[45]  N. Cabrera,et al.  Theory of the oxidation of metals , 1949 .

[46]  E. Verwey Electrolytic conduction of a solid insulator at high fields The formation of the anodic oxide film on aluminium , 1935 .