Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy

Epilepsy is a common neurological disorder, and mutations in genes encoding ion channels or neurotransmitter receptors are frequent causes of monogenic forms of epilepsy. Here we show that abnormal expansions of TTTCA and TTTTA repeats in intron 4 of SAMD12 cause benign adult familial myoclonic epilepsy (BAFME). Single-molecule, real-time sequencing of BAC clones and nanopore sequencing of genomic DNA identified two repeat configurations in SAMD12. Intriguingly, in two families with a clinical diagnosis of BAFME in which no repeat expansions in SAMD12 were observed, we identified similar expansions of TTTCA and TTTTA repeats in introns of TNRC6A and RAPGEF2, indicating that expansions of the same repeat motifs are involved in the pathogenesis of BAFME regardless of the genes in which the expanded repeats are located. This discovery that expansions of noncoding repeats lead to neuronal dysfunction responsible for myoclonic tremor and epilepsy extends the understanding of diseases with such repeat expansion.This study identifies TTTCA- and TTTTA-repeat expansions in benign adult familial myoclonic epilepsy. Cortical neurons from affected people exhibit RNA foci containing these expanded repeats, suggesting RNA toxicity as the mechanism underlying disease pathogenesis.

Koji Abe | Sumio Sugano | Akio Ikeda | Shinichi Morishita | Toshihiro Hayashi | Takefumi Hitomi | Yasuo Terao | Yoshikazu Ugawa | Ritsuko Hanajima | Koichiro Doi | Hideaki Yurino | Jun Mitsui | Hiroyuki Ishiura | Taisuke Otsuki | Masashi Hamada | Asao Fujiyama | Osamu Onodera | Masatoyo Nishizawa | Akira Sano | Koichiro Higasa | Hitoshi Takahashi | Yaeko Ichikawa | Akiyoshi Kakita | Yuji Takahashi | Naoya Hasegawa | Hidetoshi Date | Masayuki Nakamura | Ryo Yamasaki | Jun Shimizu | Kazuki Ichikawa | Hiroshi Akiyama | S. Sugano | Yutaka Suzuki | A. Fujiyama | T. Matsukawa | S. Tsuji | Toshihiro Hayashi | R. Hanajima | A. Ikeda | A. Kakita | M. Hamada | T. Hitomi | K. Higasa | S. Morishita | Y. Terao | Hitoshi Takahashi | H. Akiyama | K. Kaida | Y. Ugawa | K. Abe | A. Tamaoka | M. Nishizawa | H. Ishiura | Y. Takiyama | Yuji Takahashi | J. Goto | H. Date | J. Mitsui | Y. Ichikawa | J. Yoshimura | K. Doi | W. Qu | Kazuki Ichikawa | H. Yurino | S. Ishiura | T. Otsuki | T. Kondo | M. Otsuka | A. Sano | Y. Toyoshima | R. Yamasaki | Y. Shirota | O. Onodera | S. Inomata-Terada | Shoichi Ishiura | Yutaka Suzuki | Yuichiro Shirota | Akira Tamaoka | Satomi Inomata-Terada | R. Koike | K. Koh | J. Shimizu | T. Yasuda | Shoji Tsuji | Yoshihisa Takiyama | Mana Higashihara | M. Matsukawa | Shota Shibata | Aki Mitsue | Masaki Tanaka | J. Kanda | F. Nakamoto | M. Higashihara | M. Sasagawa | Y. Kuroha | Naoya Hasegawa | N. Kanesawa | M. Tada | H. Takano | Yutaka Saitô | K. Sanpei | Masayuki Nakamura | Y. Sakiyama | A. Ueki | A. Kubota | Natsumi Ohsawa-Yoshida | Hiroki Takano | Yasuko Toyoshima | Takayuki Kondo | Masayoshi Tada | Jun Goto | Jun Yoshimura | Takeshi Yasuda | Miho Kawabe Matsukawa | Wei Qu | Shota Shibata | Aki Mitsue | Masaki Tanaka | Takashi Matsukawa | Junko Kanda | Fumiko Kusunoki Nakamoto | Ryoko Koike | Mutsuo Sasagawa | Yasuko Kuroha | Norio Kanesawa | Yutaka Saito | Kazuhiro Sanpei | Yoshio Sakiyama | Mieko Otsuka | Akira Ueki | Ken-Ichi Kaida | Akatsuki Kubota | Kishin Koh | Natsumi Ohsawa-Yoshida | S. Inomata‐Terada | S. Shibata | Hideaki Yurino | H. Takahashi

[1]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[2]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[3]  Yuko Saito,et al.  Spinocerebellar ataxia type 31 is associated with "inserted" penta-nucleotide repeats containing (TGGAA)n. , 2009, American journal of human genetics.

[4]  Yuji Takahashi,et al.  SNP HiTLink: a high-throughput linkage analysis system employing dense SNP data , 2009, BMC Bioinformatics.

[5]  A. Kakita,et al.  Biallelic TBCD Mutations Cause Early-Onset Neurodegenerative Encephalopathy. , 2016, American journal of human genetics.

[6]  A. Ikeda,et al.  Clinical anticipation in Japanese families of benign adult familial myoclonus epilepsy , 2012, Epilepsia.

[7]  A. Ikeda,et al.  Increased clinical anticipation with maternal transmission in benign adult familial myoclonus epilepsy in Japan , 2013, Epileptic disorders : international epilepsy journal with videotape.

[8]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[9]  Patrick G. Shaw,et al.  C9orf72 Nucleotide Repeat Structures Initiate Molecular Cascades of Disease , 2014, Nature.

[10]  E. Ohama,et al.  [A clinical study and neuropathological findings of a familial disease with myoclonus and epilepsy--the nosological place of familial essential myoclonus and epilepsy (FEME)]. , 1990, Seishin shinkeigaku zasshi = Psychiatria et neurologia Japonica.

[11]  Yuji Takahashi,et al.  Rapid detection of expanded short tandem repeats in personal genomics using hybrid sequencing , 2013, Bioinform..

[12]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[13]  Toshihiro Tanaka,et al.  Localization of a gene for benign adult familial myoclonic epilepsy to chromosome 8q23.3-q24.1. , 1999, American journal of human genetics.

[14]  Takanori Yamagata,et al.  Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10 , 2000, Nature Genetics.

[15]  A. Sano,et al.  Remapping and mutation analysis of benign adult familial myoclonic epilepsy in a Japanese pedigree , 2011, Journal of Human Genetics.

[16]  S. Mccarroll,et al.  A Rapid Molecular Approach for Chromosomal Phasing , 2015, PloS one.

[17]  D. Munoz Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. , 2002, Neurology.

[18]  T. Cooper,et al.  Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. , 2002, Molecular cell.

[19]  W. Luo,et al.  Fine mapping and whole‐exome sequencing of a familial cortical myoclonic tremor with epilepsy family , 2015, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[20]  J. Weber,et al.  Alu repeats: a source for the genesis of primate microsatellites. , 1995, Genomics.

[21]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[22]  K. Flanigan,et al.  Genetic localization of the familial adult myoclonic epilepsy (FAME) gene to chromosome 8q24 , 1999, Neurology.

[23]  Ying-Hui Fu,et al.  Familial adult myoclonic epilepsy (FAME). , 2005, Advances in neurology.

[24]  Nick C Fox,et al.  Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. , 2013, American journal of human genetics.

[25]  M. Vidailhet,et al.  Familial cortical myoclonic tremor with epilepsy , 2010, Neurology.

[26]  K. Suphapeetiporn,et al.  A newly identified locus for benign adult familial myoclonic epilepsy on chromosome 3q26.32-3q28 , 2012, European Journal of Human Genetics.

[27]  H. Shibasaki,et al.  Increased cortical hyperexcitability and exaggerated myoclonus with aging in benign adult familial myoclonus epilepsy , 2011, Movement disorders : official journal of the Movement Disorder Society.

[28]  S. Tsuji,et al.  Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT , 1996, Nature Genetics.

[29]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[30]  Kunihiro Yoshida,et al.  Distinctive features of degenerating Purkinje cells in spinocerebellar ataxia type 31 , 2013, Neuropathology (Kyoto. 1993).

[31]  H Shibasaki,et al.  Cortical tremor , 1990, Neurology.

[32]  A. Sano [Benign adult familial myoclonic epilepsy(BAFME)]. , 2002, Ryoikibetsu shokogun shirizu.

[33]  Heng Li,et al.  Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences , 2015, Bioinform..

[34]  P Grosse,et al.  Autosomal dominant cortical myoclonus and epilepsy (ADCME) with complex partial and generalized seizures: A newly recognized epilepsy syndrome with linkage to chromosome 2p11.1-q12.2. , 2001, Brain : a journal of neurology.

[35]  K. Ohno,et al.  Alu-mediated acquisition of unstable ATTCT pentanucleotide repeats in the human ATXN10 gene. , 2009, Molecular biology and evolution.

[36]  D. Housman,et al.  Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues , 1995, The Journal of cell biology.

[37]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[38]  Anna Ingolfsdottir,et al.  Allegro version 2 , 2005, Nature Genetics.

[39]  S. Cannon,et al.  Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. , 2002, Molecular cell.

[40]  Hanlee P. Ji,et al.  Haplotyping germline and cancer genomes using high-throughput linked-read sequencing , 2015, Nature Biotechnology.

[41]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[42]  Brian B. Gibbens,et al.  Non-ATG–initiated translation directed by microsatellite expansions , 2010, Proceedings of the National Academy of Sciences.

[43]  I. Scheffer,et al.  Identity by descent fine mapping of familial adult myoclonus epilepsy (FAME) to 2p11.2–2q11.2 , 2016, Human Genetics.

[44]  L. Feuk,et al.  Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain , 2011, Nature Structural &Molecular Biology.