Heterogeneous short‐range order as an origin of the K‐state in α‐FeAl

While investigating the well-known K-state in binary solid solutions a series of X-ray and electron diffraction studies reveal some characteristic short range order (SRO) features. The kinetics of structure changes are followed by resistometric measurements. In all cases an equilibrium state can be reached, by an increase as well as by a decrease of the annealing temperature, and two kinetic processes of significantly different rates are identified. As being demonstrated in previous works concerning the nature of SRO in α-Cu–Al, this result can be interpreted best in terms of disperse order theory. The measured equilibrium value and the rate of its adjustment strongly depend on the measuring temperature (Tm ≦ 100 °C), being a further hint to the existence of a heterogeneous SRO structure. At no measuring temperature a maximum of the resistivity is observed, indicating that the particle size does not reach even the smallest occurring electron mean free path values. Therefore the mean particle size can be estimated to ≦ 1.6 nm, in good agreement with disperse order theory. Viele Untersuchungen der Rontgen- und Elektronenbeugung des K-Zustandes in binaren Legierungen weisen im α-Mischkristallbereich charakteristiche Nahordnungsmerkmale auf. Es wird die Kinetik der Strukturanderungen mit Hilfe resistometrischer Messungen verfolgt. Unabhangig von der Richtung der Temperaturanderung kann dabei jedesmal ein Gleichgewichtswert eingestellt werden, wobei stets zwei Prozesse mit deutlich unterschiedlichen Geschwindigkeiten auftreten Wie schon in fruheren Arbeiten zur Natur der Nahordnungszustande in α-Cu–Al gezeigt wurde, kann dieses Ergebnis am besten mit dem Modell der dispersen Ordnung erklart werden. Die gemessene Grose des Gleichgewichtswertes und die Zeit der Gleichgewichtseinstellung hangen deutlich von der Mestemperatur (Tm ≦ 100 °C) ab; auch dieses Ergebnis weist auf die Existenz einer heterogenen Nahordnungsstruktur hin. Bei keiner Mestemperatur kann ein Maximum im Widerstandsverlauf festgestellt werden, was darauf hindeutet, das die Teilchengrose kleiner ist als die kleinsten vorkommenden Werte der mittleren freien Weglange der Elektronen. Deshalb kann der mittlere Teilchendurchmesser zu ≦ 1,6 nm abgeschatzt werden, was einen fur die disperse Ordnung typischen Wert darstellt.

[1]  H. Aubauer Residual electrical resistivity of alloys , 1978 .

[2]  H. Warlimont,et al.  The structure of short range ordered α-Cu-Al alloys and a new superlattice phase , 1978 .

[3]  H. Aubauer Generalised coarsening theory in binary alloys , 1978 .

[4]  G. Veith,et al.  Kinetic study of short range order in α-CuAl alloys , 1978 .

[5]  H. Aubauer Morphological stability study in binary alloys. I. Discrete lattice theory and application to interfacial zone , 1977 .

[6]  R. Kikuchi,et al.  Kinetics of order-disorder transformations in alloys , 1976 .

[7]  G. Veith,et al.  An experimental method for demonstrating the heterogeneity of short range ordered phases (α-CuAl) , 1975 .

[8]  G. Veith,et al.  Two processes in the kinetics of short-range ordering and disordering in Cu-15 at% Al , 1975 .

[9]  P. Rossiter,et al.  A computer simulation of the electrical resistivity during pre-precipitation , 1973 .

[10]  S. Das,et al.  Short range order in Ni-Mo, Au-Cr, Au-V and Au-Mn alloys☆ , 1973 .

[11]  H. Aubauer,et al.  Kinetics of ordering and disordering in CuAl (15 AT %) alloys after sudden changes of annealing temperature , 1973 .

[12]  P. Rossiter,et al.  The electrical resistivity during pre-precipitation processes , 1971 .

[13]  P. Rossiter,et al.  The dependence of electrical resistivity on short-range order , 1971 .

[14]  H. Saito,et al.  Transmission Electron Microscopic Study on the “K-State” in Iron-Aluminium Alloys , 1970 .

[15]  H. Warlimont,et al.  Two-Phase Microstructures of α-Fe–Al Alloys in the K-State , 1970 .

[16]  J. E. Hilliard,et al.  LOCAL ATOMIC ARRANGEMENTS STUDIED BY X-RAY DIFFRACTION. Proceedings of a Symposium held in Chicago, Illinois, February 15, 1965. , 1966 .

[17]  A. G. Guy,et al.  An investigation of the k-effect in Nickel-Aluminum alloys , 1965 .

[18]  P. C. Gehlen,et al.  Computer Simulation of the Structure Associated with Local Order in Alloys , 1965 .

[19]  C. J. Sparks,et al.  THE SHORT-RANGE STRUCTURE OF COPPER-16 At.% ALUMINUM , 1964 .

[20]  J. Cohen,et al.  Some aspects of short-range order , 1962 .

[21]  R. Kikuchi Statistical dynamics of crystalline diffusion II. Vacancy mechanism , 1961 .

[22]  R. G. Davies,et al.  X-ray evidence for segregation of solute to stacking faults in a copper-aluminium alloy , 1960 .

[23]  A. Taylor,et al.  Constitution and magnetic properties of iron-rich iron-aluminum alloys , 1958 .