Identification in the Limit of Systematic-Noisy Languages
暂无分享,去创建一个
Colin de la Higuera | Jean-Christophe Janodet | Frédéric Tantini | C. D. L. Higuera | J. Janodet | Frédéric Tantini
[1] Barak A. Pearlmutter,et al. Results of the Abbadingo One DFA Learning Competition and a New Evidence-Driven State Merging Algorithm , 1998, ICGI.
[2] Yuji Takada. Grammatical Interface for Even Linear Languages Based on Control Sets , 1988, Inf. Process. Lett..
[3] E. Mark Gold,et al. Complexity of Automaton Identification from Given Data , 1978, Inf. Control..
[4] Michael Kearns,et al. Efficient noise-tolerant learning from statistical queries , 1993, STOC.
[5] Satoshi Kobayashi,et al. On Approximately Identifying Concept Classes in the Limit , 1995, ALT.
[6] José Oncina,et al. Learning Stochastic Regular Grammars by Means of a State Merging Method , 1994, ICGI.
[7] Leslie G. Valiant,et al. Cryptographic Limitations on Learning Boolean Formulae and Finite Automata , 1993, Machine Learning: From Theory to Applications.
[8] T. Ho,et al. Data Complexity in Pattern Recognition , 2006 .
[9] John Case,et al. Synthesizing noise-tolerant language learners , 2001, Theor. Comput. Sci..
[10] Michael J. Fischer,et al. The String-to-String Correction Problem , 1974, JACM.
[11] R. M. Wharton. Approximate Language Identification , 1974, Inf. Control..
[12] Takashi Yokomori,et al. Inductive Learning of Regular Sets from Examples: A Rough Set Approach , 1994 .
[13] Naoki Abe,et al. On the computational complexity of approximating distributions by probabilistic automata , 1990, Machine Learning.
[14] Laurent Miclet,et al. Définitions et premières expériences en apprentissage par analogie dans les séquences , 2005, CAP.
[15] Ah Chung Tsoi,et al. Noisy Time Series Prediction using Recurrent Neural Networks and Grammatical Inference , 2001, Machine Learning.
[16] Francisco Casacuberta,et al. Topology of Strings: Median String is NP-Complete , 1999, Theor. Comput. Sci..
[17] Zdzislaw Pawlak,et al. Theory of Rough Sets: A New Methodology for Knowledge Discovery (Abstract) , 1990, International Conference on Computing and Information.
[18] Marc Sebban,et al. On State Merging in Grammatical Inference: A Statistical Approach for Dealing with Noisy Data , 2003, ICML.
[19] Colin de la Higuera,et al. A bibliographical study of grammatical inference , 2005, Pattern Recognit..
[20] Colin de la Higuera,et al. Data Complexity Issues in Grammatical Inference , 2006 .
[21] Rafael C. Carrasco,et al. Grammatical Inference and Applications , 1994, Lecture Notes in Computer Science.
[22] Yasubumi Sakakibara,et al. Recent Advances of Grammatical Inference , 1997, Theor. Comput. Sci..
[23] C. D. L. Higuera. Complexity and Reductions Issues in Grammatical Inference , 2005 .
[24] Marc Sebban,et al. Improvement of the State Merging Rule on Noisy Data in Probabilistic Grammatical Inference , 2003, ECML.
[25] Vladimir I. Levenshtein,et al. Binary codes capable of correcting deletions, insertions, and reversals , 1965 .
[26] Francisco Casacuberta,et al. Probabilistic finite-state machines - part I , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[27] Daniel Fredouille,et al. Unambiguous Automata Inference by Means of State-Merging Methods , 2003, ECML.
[28] Hendrik Blockeel,et al. Machine Learning: ECML 2003 , 2003, Lecture Notes in Computer Science.
[29] Frank Stephan,et al. Noisy Inference and Oracles , 1995, Theor. Comput. Sci..
[30] Colin de la Higuera. Data complexity in grammatical inference , 2006 .
[31] Alexander Clark,et al. PAC-learnability of Probabilistic Deterministic Finite State Automata , 2004, J. Mach. Learn. Res..
[32] E. Mark Gold,et al. Language Identification in the Limit , 1967, Inf. Control..