Experimental study on boiling two-phase of liquid sodium along a 7-rod bundle – Part Ⅱ: Heat transfer characteristics

[1]  S. Qiu,et al.  Thermal fatigue analysis of structures subjected to liquid metal jets at different temperatures in the Gen-IV nuclear energy system , 2022, Energy.

[2]  S. Qiu,et al.  Study on the flow and heat transfer characteristics of liquid sodium in a hexagonal 7-rod bundle , 2022, Nuclear Engineering and Design.

[3]  G. Su,et al.  Large eddy simulation on the mixing characteristics of liquid sodium at the core outlet of sodium cooled fast reactors (SFR) , 2021 .

[4]  S. Qiu,et al.  Numerical study on the thermal stratification characteristics in the upper plenum of sodium-cooled fast reactor (SFR) , 2020 .

[5]  G. Su,et al.  Experimental study of liquid sodium flow and heat transfer characteristics along a hexagonal 7-rod bundle , 2019, Applied Thermal Engineering.

[6]  V. M. Poplavskii,et al.  Experimental studies of heat exchange for sodium boiling in the fuel assembly model: Safety substantiation of a promising fast reactor , 2017 .

[7]  V. M. Poplavskii,et al.  Experimental Investigations of Heat Transfer Upon Sodium Boiling in a Model Fuel Assembly for Safety Validation of an Advanced Fast Reactor , 2016 .

[8]  G. Su,et al.  Pressure drop characteristics of two-phase flow in a vertical rod bundle with support plates , 2016 .

[9]  Ruslan Rashitovich Khafizov,et al.  Experimental investigation of sodium boiling heat exchange in fuel subassembly mockup for perspective fast reactor safety substantiation , 2015 .

[10]  G. Su,et al.  Experimental research of liquid entrainment through ADS-4 in AP1000 , 2014 .

[11]  G. Su,et al.  Experimental research on the incipient boiling wall superheat of sodium , 2013 .

[12]  A. D. Efanov,et al.  Heat transfer under natural convection of liquid metal during its boiling in a system of channels , 2007 .

[13]  H. Ninokata,et al.  Experimental and Numerical Study of Liquid Metal Boiling in a System of Parallel Bundles under Natural Circulation Conditions , 2006 .

[14]  Y. Zeigarnik Regenerated Boiling and Enhancement of Heat Transfer , 2001 .

[15]  A. D. Efanov,et al.  Heat transfer during boiling of a liquid metal during emergency cooldown of a fast-neutron reactor , 1999 .

[16]  I. Michiyoshi Liquid Metal Two-Phase Flow Heat Transfer with and without Magnetic Field , 1989 .

[17]  F. Huber,et al.  Sodium boiling experiments at low power under natural convection conditions , 1987 .

[18]  O. Takahashi,et al.  Mercury-argon two-phase heat transfer in a vertical annulus under transverse magnetic field , 1982 .

[19]  Kazuo Haga,et al.  Sodium boiling experiments in a 19-pin bundle under loss-of-flow conditions , 1981 .

[20]  W. Peppler,et al.  Sodium boiling experiments in a seven-pin bundle: Flow patterns and two-phase pressure drop , 1977 .

[21]  W. Peppler,et al.  Sodium boiling experiments in a 7-pin bundle: Investigations into some safety aspects of the KNK II driver zone , 1977 .

[22]  A. Kaiser,et al.  Type of flow, pressure drop, and critical heat flux of a two-phase sodium flow , 1974 .

[23]  Mizushina Tokuro,et al.  Effect of gas entrainment on liquid metal heat transfer , 1964 .

[24]  Yingjie Wang,et al.  Recent progress of CFD applications in PWR thermal hydraulics study and future directions , 2021 .

[25]  G. Su,et al.  Experimental research on the thermal hydraulic characteristics of sodium boiling in an annulus , 2015 .

[26]  Georgy Sorokin,et al.  Experimentaland numerical investigation of liquid metal boiling in fuel subassemblies under natural circulation conditions , 2005 .

[27]  A. Sorokin,et al.  Main Results of Na-K Alloy Boiling Investigation , 2002 .