6 – Mapping Prefrontal Cortical Systems for the Control of Cognition

Publisher Summary This chapter focuses on the contribution of functional neuroimaging studies with positron emission tomography and functional magnetic resonance imaging to understand the functional organization of the lateral prefrontal cortex. The analysis of the effects of middorsolateral prefrontal lesions on memory established two important facts that define the specialized functional contribution of this region. First, the demonstration that middorsolateral prefrontal lesions impair performance on nonspatial visual working memory tasks, with the appropriate monitoring requirements, indicated that this region cannot simply be conceived as a specialized working memory module for spatial information. Second, it is clear that, following middorsolateral prefrontal cortical lesions, information can still be maintained on-line but that the capacity to consider multiple pieces of information in working memory is severely reduced. Based on this analysis and other anatomical and behavioral work, it was proposed that the middorsolateral and the midventrolateral prefrontal cortex underlie two distinct levels of executive control of cognition. This theoretical model proposed that the middorsolateral prefrontal cortex is a specialized region for the on-line monitoring and manipulation of cognitive representations within working memory.

[1]  M. E. Raichle,et al.  Right Anterior Prefrontal Cortex Activation during Semantic Monitoring and Working Memory , 1998, NeuroImage.

[2]  Leslie G. Ungerleider,et al.  Face encoding and recognition in the human brain. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[3]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[4]  C. Geula,et al.  Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey , 1992, The Journal of comparative neurology.

[5]  H. E. Rosvold,et al.  Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. , 1970, Experimental neurology.

[6]  H. Niki,et al.  Prefrontal cortical unit activity and delayed alternation performance in monkeys. , 1971, Journal of neurophysiology.

[7]  D. Pandya,et al.  Architecture and Connections of Cortical Association Areas , 1985 .

[8]  S. Petersen,et al.  Functional Anatomic Studies of Memory Retrieval for Auditory Words and Visual Pictures , 1996, The Journal of Neuroscience.

[9]  M MISHKIN,et al.  Effects of small frontal lesions on delayed alternation in monkeys. , 1957, Journal of neurophysiology.

[10]  R. Desimone,et al.  A neural mechanism for working and recognition memory in inferior temporal cortex. , 1991, Science.

[11]  D. Pandya,et al.  Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns , 1999, The European journal of neuroscience.

[12]  P. Goldman-Rakic,et al.  Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey , 1984, Neuroscience.

[13]  R. Dolan,et al.  Differential activation of the prefrontal cortex in successful and unsuccessful memory retrieval. , 1996, Brain : a journal of neurology.

[14]  A. Dale,et al.  Functional–Anatomic Study of Episodic Retrieval II. Selective Averaging of Event-Related fMRI Trials to Test the Retrieval Success Hypothesis , 1998, NeuroImage.

[15]  F. Craik,et al.  Functional Neuroanatomy of Recall and Recognition: A PET Study of Episodic Memory , 1997, Journal of Cognitive Neuroscience.

[16]  Karl J. Friston,et al.  Functional mapping of brain areas implicated in auditory--verbal memory function. , 1993, Brain : a journal of neurology.

[17]  Richard S. J. Frackowiak,et al.  The neural correlates of the verbal component of working memory , 1993, Nature.

[18]  N Butters,et al.  Retention of Delayed-Alternation: Effect of Selective Lesions of Sulcus Principalis , 1969, Science.

[19]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[20]  D. Pandya,et al.  Efferent cortico-cortical projections of the prefrontal cortex in the rhesus monkey. , 1971, Brain research.

[21]  P. Goldman-Rakic,et al.  Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response , 1982, Brain Research.

[22]  Richard Passingham,et al.  Delayed matching after selective prefrontal lesions in monkeys (Macaca mulatta) , 1975, Brain Research.

[23]  J Tanji,et al.  An oculomotor representation area within the ventral premotor cortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  H. Barbas Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey , 1988, The Journal of comparative neurology.

[25]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[26]  C. Degueldre,et al.  Regional brain activity during working memory tasks. , 1996, Brain : a journal of neurology.

[27]  Alan C. Evans,et al.  A Specific Role for the Right Parahippocampal Gyrus in the Retrieval of Object-Location: A Positron Emission Tomography Study , 1996, Journal of Cognitive Neuroscience.

[28]  M Mishkin,et al.  The origin, course, and termination of the hippocampothalamic projections in the macaque , 1986, The Journal of comparative neurology.

[29]  D. Amaral,et al.  Amygdalo‐cortical projections in the monkey (Macaca fascicularis) , 1984, The Journal of comparative neurology.

[30]  J. Price,et al.  Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys , 1995, The Journal of comparative neurology.

[31]  P. Goldman-Rakic,et al.  Myelo‐ and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca , 1991, The Journal of comparative neurology.

[32]  F. Miezin,et al.  Functional anatomical studies of explicit and implicit memory retrieval tasks , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  M. D’Esposito,et al.  The neural basis of the central executive system of working memory , 1995, Nature.

[34]  M. Mesulam,et al.  Cortical afferent input to the principals region of the rhesus monkey , 1985, Neuroscience.

[35]  M. Petrides,et al.  Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J M Fuster,et al.  Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  M. Mishkin,et al.  Non-spatial memory after selective prefrontal lesions in monkeys , 1978, Brain Research.

[38]  T. Powell,et al.  An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. , 1970, Brain : a journal of neurology.

[39]  W. Nauta,et al.  Neural associations of the amygdaloid complex in the monkey. , 1962, Brain : a journal of neurology.

[40]  R. E. Passingham,et al.  Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta) , 1980, Brain Research.

[41]  M E Goldberg,et al.  Frontal eye field efferents in the macaque monkey: I. Subcortical pathways and topography of striatal and thalamic terminal fields , 1988, The Journal of comparative neurology.

[42]  D. Amaral,et al.  The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis , 1987, The Journal of comparative neurology.

[43]  Masataka Watanabe,et al.  Cingulate unit activity and delayed response , 1976, Brain Research.

[44]  C. Jacobsen,et al.  Studies of cerebral function in primates. I. The functions of the frontal association areas in monkeys. , 1936 .

[45]  D. Pandya,et al.  Cortico-cortical connections in the rhesus monkey. , 1969, Brain research.

[46]  H. Barbas,et al.  Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey , 1995, Hippocampus.

[47]  P. Goldman-Rakic,et al.  The primate mediodorsal (MD) nucleus and its projection to the frontal lobe , 1985, The Journal of comparative neurology.

[48]  R. Desimone,et al.  Neural Mechanisms of Visual Working Memory in Prefrontal Cortex of the Macaque , 1996, The Journal of Neuroscience.

[49]  N Butters,et al.  Cortical Afferents to the Entorhinal Cortex of the Rhesus Monkey , 1972, Science.

[50]  Deepak N. Pandya,et al.  Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents , 1975, Brain Research.

[51]  Alan C. Evans,et al.  Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: a positron emission tomography study. , 1996, Cerebral cortex.

[52]  P. Goldman-Rakic,et al.  Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic "scotomas" , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  Edward E. Smith,et al.  A Parametric Study of Prefrontal Cortex Involvement in Human Working Memory , 1996, NeuroImage.

[54]  B. Milner,et al.  Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man , 1982, Neuropsychologia.

[55]  C. Gross,et al.  Evidence for dissociation of impairment on auditory discrimination and delayed response following lateral frontal lesions in monkeys. , 1962, Experimental neurology.

[56]  H. E. Rosvold,et al.  Analysis of the delayed-alternation deficit produced by dorsolateral prefrontal lesions in the rhesus monkey. , 1971, Journal of comparative and physiological psychology.

[57]  W. R. Adey,et al.  An experimental study of hippocampal afferent pathways from prefrontal and cingulate areas in the monkey. , 1952, Journal of anatomy.

[58]  M. Petrides Comparative architectonic analysis of the human and the macaque frontal cortex , 1994 .

[59]  J D Schall,et al.  Topography of supplementary eye field afferents to frontal eye field in macaque: Implications for mapping between saccade coordinate systems , 1993, Visual Neuroscience.

[60]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  A R McIntosh,et al.  Functional brain maps of retrieval mode and recovery of episodic information , 1995, Neuroreport.

[62]  B. Milner,et al.  Disorders of learning and memory after temporal lobe lesions in man. , 1972, Clinical neurosurgery.

[63]  E. Tulving Elements of episodic memory , 1983 .

[64]  J Schlag,et al.  Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections , 1990, The Journal of comparative neurology.

[65]  D. Pandya,et al.  Projections to the frontal cortex from the posterior parietal region in the rhesus monkey , 1984, The Journal of comparative neurology.

[66]  F. Sanides Die Architektonik des Menschlichen Stirnhirns , 1962 .

[67]  H. Niki,et al.  Hippocampal unit activity and delayed response in the monkey , 1985, Brain Research.

[68]  T. J. Tobias,et al.  Afferents to prefrontal cortex from the thalamic mediodorsal nucleus in the rhesus monkey , 1975, Brain Research.

[69]  Alan C. Evans,et al.  Memory for object features versus memory for object location: a positron-emission tomography study of encoding and retrieval processes , 1996 .

[70]  G. B. Stanton,et al.  Cytoarchitectural characteristic of the frontal eye fields in macaque monkeys , 1989, The Journal of comparative neurology.

[71]  L. Squire,et al.  The medial temporal lobe memory system , 1991, Science.

[72]  Mortimer Mishkin,et al.  Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys , 1986, Behavioural Brain Research.

[73]  D. Schacter,et al.  Functional–Anatomic Study of Episodic Retrieval Using fMRI I. Retrieval Effort versus Retrieval Success , 1998, NeuroImage.

[74]  Leslie G. Ungerleider,et al.  An area specialized for spatial working memory in human frontal cortex. , 1998, Science.

[75]  F Mauguiere,et al.  The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis. , 1980, Brain : a journal of neurology.

[76]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[77]  W. Nauta,et al.  Fibre degeneration following lesions of the amygdaloid complex in the monkey. , 1961, Journal of anatomy.

[78]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[79]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. , 1983, Journal of neurophysiology.

[80]  G. E. Alexander,et al.  Neuron Activity Related to Short-Term Memory , 1971, Science.

[81]  F. Craik,et al.  Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[82]  G. V. Van Hoesen,et al.  Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. , 1977, Science.

[83]  J. Fuster Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. , 1973, Journal of neurophysiology.

[84]  P S Goldman-Rakic,et al.  Callosal and intrahemispheric connectivity of the prefrontal association cortex in rhesus monkey: Relation between intraparietal and principal sulcal cortex , 1984, The Journal of comparative neurology.

[85]  M. Mishkin A memory system in the monkey. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[86]  M Petrides,et al.  Impairments on nonspatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[87]  M Mishkin,et al.  Projections of the amygdala to the thalamus in the cynomolgus monkey , 1984, The Journal of comparative neurology.

[88]  Richard S. J. Frackowiak,et al.  Brain regions associated with acquisition and retrieval of verbal episodic memory , 1994, Nature.

[89]  E. Bullmore,et al.  Neural correlates of working memory in a visual letter monitoring task: an fMRI study , 1995, Neuroreport.

[90]  C D Frith,et al.  Brain activity during memory retrieval. The influence of imagery and semantic cueing. , 1996, Brain : a journal of neurology.

[91]  Alan C. Evans,et al.  Functional activation of the human ventrolateral frontal cortex during mnemonic retrieval of verbal information. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[92]  M. Petrides,et al.  Functional Organization of the Human Frontal Cortex for Mnemonic Processing. , 1995, Annals of the New York Academy of Sciences.

[93]  H Niki,et al.  Prefrontal unit activity during delayed alternation in the monkey. II. Relation to absolute versus relative direction of response. , 1974, Brain research.

[94]  M Petrides,et al.  Monitoring of selections of visual stimuli and the primate frontal cortex , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[95]  Alan C. Evans,et al.  Functional activation of the human frontal cortex during the performance of verbal working memory tasks. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[96]  H Niki,et al.  Prefrontal unit activity during delayed alternation in the monkey. I. Relation to direction of response. , 1974, Brain research.

[97]  E. T. Rolls,et al.  Responses of hippocampal formation neurons in the monkey related to delayed spatial response and object-place memory tasks , 1989, Behavioural Brain Research.

[98]  M. Petrides,et al.  Specialized systems for the processing of mnemonic information within the primate frontal cortex. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[99]  H. Barbas,et al.  Organization of afferent input to subdivisions of area 8 in the rhesus monkey , 1981, The Journal of comparative neurology.

[100]  C D Frith,et al.  The functional roles of prefrontal cortex in episodic memory. II. Retrieval. , 1998, Brain : a journal of neurology.

[101]  D. Pandya,et al.  Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey , 1988, The Journal of comparative neurology.

[102]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[103]  Edward E. Smith,et al.  Spatial working memory in humans as revealed by PET , 1993, Nature.

[104]  D. Pandya,et al.  Fiber system linking the mid‐dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey , 1999, The Journal of comparative neurology.

[105]  S. Carmichael,et al.  Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys , 1996 .

[106]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[107]  P. Goldman-Rakic Architecture of the Prefrontal Cortex and the Central Executive , 1995, Annals of the New York Academy of Sciences.

[108]  Mortimer Mishkin,et al.  A re-examination of the effects of frontal lesions on object alternation , 1969 .

[109]  T. Shallice,et al.  The functional roles of prefrontal cortex in episodic memory. I. Encoding. , 1998, Brain : a journal of neurology.

[110]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[111]  B. J. Casey,et al.  Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI , 1994, Human brain mapping.

[112]  P M Grasby,et al.  Brain systems for encoding and retrieval of auditory-verbal memory. An in vivo study in humans. , 1995, Brain : a journal of neurology.

[113]  L A Krubitzer,et al.  Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections , 1986, The Journal of comparative neurology.