On the Relation of Strong Triadic Closure and Cluster Deletion

We study the parameterized and classical complexity of two problems that are concerned with induced paths on three vertices, called  $$P_3$$ P 3 s, in undirected graphs  $$G=(V,E)$$ G = ( V , E ) . In Strong Triadic Closure we aim to label the edges in  E as strong and weak such that at most  k edges are weak and  G contains no induced  $$P_3$$ P 3 with two strong edges. In Cluster Deletion we aim to destroy all induced  $$P_3$$ P 3 s by a minimum number of edge deletions. We first show that Strong Triadic Closure admits a 4 k -vertex kernel. Then, we study parameterization by  $$\ell :=|E|-k$$ ℓ : = | E | - k and show that both problems are fixed-parameter tractable and unlikely to admit a polynomial kernel with respect to  $$\ell $$ ℓ . Finally, we give a dichotomy of the classical complexity of both problems on  H -free graphs for all  H of order at most four.

[1]  S. Poljak A note on stable sets and colorings of graphs , 1974 .

[2]  Christian Komusiewicz,et al.  Cluster editing with locally bounded modifications , 2012, Discret. Appl. Math..

[3]  Christian Komusiewicz,et al.  Your Rugby Mates Don't Need to Know your Colleagues: Triadic Closure with Edge Colors , 2018, CIAC.

[4]  Liping Sun Two classes of perfect graphs , 1991, J. Comb. Theory, Ser. B.

[5]  Van Bang Le Gallai graphs and anti-Gallai graphs , 1996, Discret. Math..

[6]  Roded Sharan,et al.  Cluster graph modification problems , 2002, Discret. Appl. Math..

[7]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[8]  Jiong Guo,et al.  A More Effective Linear Kernelization for Cluster Editing , 2007, ESCAPE.

[9]  René van Bevern,et al.  Fixed-Parameter Algorithms for Maximum-Profit Facility Location Under Matroid Constraints , 2018, CIAC.

[10]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[11]  Najiba Sbihi,et al.  Algorithme de recherche d'un stable de cardinalite maximum dans un graphe sans etoile , 1980, Discret. Math..

[12]  Peter Damaschke,et al.  Even faster parameterized cluster deletion and cluster editing , 2011, Inf. Process. Lett..

[13]  Charis Papadopoulos,et al.  Strong Triadic Closure in Cographs and Graphs of Low Maximum Degree , 2017, COCOON.

[14]  Aristides Gionis,et al.  Inferring the Strength of Social Ties: A Community-Driven Approach , 2017, KDD.

[15]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[16]  Panayiotis Tsaparas,et al.  Using strong triadic closure to characterize ties in social networks , 2014, KDD.

[17]  Yong Gao,et al.  The cluster deletion problem for cographs , 2013, Discret. Math..

[18]  Wen-Lian Hsu,et al.  Substitution Decomposition on Chordal Graphs and Applications , 1991, ISA.

[19]  Anders Yeo,et al.  Kernel bounds for disjoint cycles and disjoint paths , 2009, Theor. Comput. Sci..

[20]  Charis Papadopoulos,et al.  Maximizing the Strong Triadic Closure in Split Graphs and Proper Interval Graphs , 2016, ISAAC.

[21]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[22]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[23]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[24]  Stefan Kratsch,et al.  Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..

[25]  Petr A. Golovach,et al.  Parameterized Aspects of Strong Subgraph Closure , 2018, Algorithmica.

[26]  Jayme Luiz Szwarcfiter,et al.  Applying Modular Decomposition to Parameterized Cluster Editing Problems , 2008, Theory of Computing Systems.

[27]  Christian Komusiewicz,et al.  On the Relation of Strong Triadic Closure and Cluster Deletion , 2018, Algorithmica.