Models of Peano Arithmetic and a question of Sikorski on ordered fields

Using models of Peano Arithmetic, we solve a problem of Sikorski by showing that the existence of an ordered field of cardinalityλ with the Bolzano-Weierstrass property forκ-sequences is equivalent to the existence of aκ-tree with exactlyλ branches and with noκ-Aronszajn subtrees.