Synchronization of chaotic Lur’e systems with state and transmission line time delay: a linear matrix inequality approach

This paper is concerned with the problem of the master–slave synchronization of chaotic Lur’e systems with multiple time delays in their states and transmission line. Based on the Lyapunov–Krasovskii functional, some delay-dependent synchronization criteria are obtained and formulated in the form of linear matrix inequalities (LMIs) to ascertain the global asymptotic stability of the error system such that the slave system is synchronized with the master. With the help of the LMI solvers, the time-delay feedback control law can easily be obtained. The effectiveness of the proposed method is illustrated using some numerical simulations performed on two chaotic systems.

[1]  Xin-Ping Guan,et al.  Master-slave synchronization criteria of Lur'e systems with time-delay feedback control , 2014, Appl. Math. Comput..

[2]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[3]  Jinde Cao,et al.  Exponential synchronization of chaotic Lur’e systems with delayed feedback control , 2009 .

[4]  S. M. Lee,et al.  Secure communication based on chaotic synchronization via interval time-varying delay feedback control , 2011 .

[5]  Qing-Long Han,et al.  Fault-Tolerant Master–Slave Synchronization for Lur'e Systems Using Time-Delay Feedback Control , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  David J. Hill,et al.  Global Asymptotical Synchronization of Chaotic Lur'e Systems Using Sampled Data: A Linear Matrix Inequality Approach , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[7]  Shouming Zhong,et al.  Synchronization criteria of time-delay feedback control system with sector-bounded nonlinearity , 2007, Appl. Math. Comput..

[8]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[9]  G. Feng,et al.  Robust H infinity synchronization of chaotic Lur'e systems. , 2008, Chaos.

[10]  Ju H. Park,et al.  Further results on sampled-data control for master–slave synchronization of chaotic Lur’e systems with time delay , 2015 .

[11]  Priyanka Kokil,et al.  Stability Analysis of Linear Discrete-Time Systems with Interval Delay: A Delay-Partitioning Approach , 2011 .

[12]  S. M. Lee,et al.  Synchronization for chaotic Lur’e systems with sector-restricted nonlinearities via delayed feedback control , 2009 .

[13]  Qing-Long Han,et al.  Master-Slave Synchronization of nonautonomous Chaotic Systems and its Application to rotating pendulums , 2012, Int. J. Bifurc. Chaos.

[14]  Dan Wei,et al.  Global exponential synchronization of nonlinear time-delay Lur'e systems via delayed impulsive control , 2014, Commun. Nonlinear Sci. Numer. Simul..

[15]  Jinde Cao,et al.  Synchronization criteria of Lur’e systems with time-delay feedback control , 2005 .

[16]  Z. Bao,et al.  Improved synchronization criteria for a class dynamical complex network with internal delay , 2012 .

[17]  Q. Han New delay-dependent synchronization criteria for Lur'e systems using time delay feedback control , 2007 .

[18]  Silviu-Iulian Niculescu,et al.  Survey on Recent Results in the Stability and Control of Time-Delay Systems* , 2003 .

[19]  Jianjiang Yu,et al.  Delay-range-dependent synchronization criterion for Lur’e systems with delay feedback control , 2009 .

[20]  Huaguang Zhang,et al.  Adaptive synchronization of an uncertain coupling complex network with time-delay , 2014 .

[21]  He Huang,et al.  Erratum: “Robust H∞ synchronization of chaotic Lur’e systems” [Chaos 18, 033113 (2008)] , 2009 .

[22]  S. M. Lee,et al.  Constrained predictive synchronization of discrete-time chaotic Lur’e systems with time-varying delayed feedback control , 2013 .

[23]  Liyong Niu,et al.  A revisit to synchronization of Lurie systems with time-delay feedback control , 2009 .

[24]  Yanjun Li,et al.  An improved condition for master-slave synchronization of Lur'e systems , 2007 .