Sustainability Consolidated Ln3+(Ce3+‐Pr3+‐Nd3+):SnO2 System for Variegated Electrochemical and Photovoltaic Applications

[1]  Muhammad Imran,et al.  Effect of growth duration of Zn0.76Co0.24S interconnected nanosheets for high-performance flexible energy storage electrode materials , 2022, Ceramics International.

[2]  G. Yasin,et al.  An Efficient and Durable Bifunctional Electrocatalyst Based on Sno2/Cnt Toward Electrocatalytic Full Water Splitting , 2022, SSRN Electronic Journal.

[3]  Xinyu Wei,et al.  Inducing the SnO2-based electron transport layer into NiFe LDH/NF as efficient catalyst for OER and methanol oxidation reaction , 2022, Journal of Materials Science & Technology.

[4]  Y. Tong,et al.  Oxygen Vacancy-Based Metal Oxides Photoanodes in Photoelectrochemical Water Splitting , 2022, Materials Today Sustainability.

[5]  Zhiguang Guo,et al.  All-Inorganic Perovskite Solar Cells with Tetrabutylammonium Acetate as the Buffer Layer between the SnO2 Electron Transport Film and CsPbI3. , 2022, ACS applied materials & interfaces.

[6]  M. A. Malik,et al.  Electrochemical trapping of meta-stable NiO consolidated ZnO/PdO by biomimetic provenance for the employment of clean energy generation , 2022, Materials Science in Semiconductor Processing.

[7]  M. Sanad,et al.  Effect of polymerization conditions on the physicochemical and electrochemical properties of SnO2/polypyrrole composites for supercapacitor applications , 2021, Journal of Molecular Structure.

[8]  A. Zakari,et al.  Energy efficiency and sustainable development goals (SDGs) , 2021, Energy.

[9]  K. Ahmad,et al.  Newfangled progressions in the charge transport layers impacting the stability and efficiency of perovskite solar cells , 2021, Reviews in Inorganic Chemistry.

[10]  Q. Tang,et al.  Dimensionality Control of SnO2 Films for Hysteresis-Free, All-Inorganic CsPbBr3 Perovskite Solar Cells with Efficiency Exceeding 10. , 2021, ACS applied materials & interfaces.

[11]  P. Sakthivel,et al.  Synthesis and characterization of various transition metals doped SnO2@MoS2 composites for supercapacitor and photocatalytic applications , 2021, Journal of Alloys and Compounds.

[12]  Yongming Zhang,et al.  Facile synthesis of SnO2 nanostructures for enhanced electrochemical hydrogen evolution reaction , 2021 .

[13]  G. Udhaya Sankar,et al.  Investigation of electrochemical properties of various transition metals doped SnO2 spherical nanostructures for supercapacitor applications , 2020 .

[14]  C. Zequine,et al.  Sustainable synthesis of organic framework-derived ZnO nanoparticles for fabrication of supercapacitor electrode , 2020, Environmental technology.

[15]  A. Agarwal,et al.  Observations of phonon anharmonicity and microstructure changes by the laser power dependent Raman spectra in Co doped SnO2 nanoparticles , 2020 .

[16]  M. A. Malik,et al.  Evaluation of electrochemical properties for water splitting by NiO nano-cubes synthesized using Olea ferruginea Royle , 2020 .

[17]  K. Ahmad,et al.  Synthesis, characterization and electrochemical investigation of physical vapor deposited barium sulphide doped iron sulphide dithiocarbamate thin films , 2020 .

[18]  Yibing Li,et al.  Co-Fe binary metal oxide electrocatalyst with synergistic interface structures for efficient overall water splitting , 2020, Catalysis Today.

[19]  Zhigang Zang,et al.  Interface Modulator of Ultrathin Magnesium Oxide for Low‐Temperature‐Processed Inorganic CsPbIBr 2 Perovskite Solar Cells with Efficiency Over 11% , 2020 .

[20]  N. Krishnakumar,et al.  Hydrothermal synthesis of surfactant assisted Zn doped SnO2 nanoparticles with enhanced photocatalytic performance and energy storage performance , 2020 .

[21]  K. Ahmad,et al.  Interfacial engineering revolutionizers: perovskite nanocrystals and quantum dots accentuated performance enhancement in perovskite solar cells , 2020 .

[22]  Dong Won Kim,et al.  Long term thermostable supercapacitor using in-situ SnO2 doped porous graphene aerogel , 2020 .

[23]  K. Ahmad,et al.  Biomimetic detoxifier Prunus cerasifera Ehrh. silver nanoparticles: innate green bullets for morbific pathogens and persistent pollutants , 2020, Environmental Science and Pollution Research.

[24]  M. F. Malik,et al.  Semiconductor based nanomaterials for harvesting green hydrogen energy under solar light irradiation , 2020, International Journal of Environmental Analytical Chemistry.

[25]  N. Taghavinia,et al.  Improvement of planar perovskite solar cells by using solution processed SnO2/CdS as electron transport layer , 2019, Solar Energy.

[26]  Hyun‐Seok Kim,et al.  Porous materials of nitrogen doped graphene oxide@SnO2 electrode for capable supercapacitor application , 2019, Scientific Reports.

[27]  Ateeq Ahmed,et al.  Defect assisted improved room temperature ferromagnetism in Ce doped SnO2 nanoparticles , 2019, Applied Surface Science.

[28]  Q. Tang,et al.  Using SnO2 QDs and CsMBr3 (M = Sn, Bi, Cu) QDs as Charge-Transporting Materials for 10.6%-Efficiency All-Inorganic CsPbBr3 Perovskite Solar Cells with an Ultrahigh Open-Circuit Voltage of 1.610 V , 2019, Solar RRL.

[29]  K. Ahmad,et al.  Carpogenic ZnO nanoparticles: amplified nanophotocatalytic and antimicrobial action. , 2019, IET nanobiotechnology.

[30]  A. K. Patra,et al.  IrO2 and Pt Doped Mesoporous SnO2 Nanospheres as Efficient Electrocatalysts for the Facile OER and HER , 2018, ChemCatChem.

[31]  K. Ahmad,et al.  Augmented photocatalytic, antibacterial and antifungal activity of prunosynthetic silver nanoparticles , 2018, Artificial cells, nanomedicine, and biotechnology.

[32]  P. Baraneedharan,et al.  Size controlled synthesis of SnO 2 and its electrostatic self- assembly over reduced graphene oxide for photocatalyst and supercapacitor application , 2018, Materials Research Bulletin.

[33]  Dong Yang,et al.  High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2 , 2018, Nature Communications.

[34]  K. Ahmad,et al.  Neoteric environmental detoxification of organic pollutants and pathogenic microbes via green synthesized ZnO nanoparticles , 2018, Environmental technology.

[35]  K. Ahmad,et al.  Phytosynthetic Ag doped ZnO nanoparticles: Semiconducting green remediators , 2018, Open Chemistry.

[36]  Dinesh Kumar,et al.  High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks , 2018, Scientific Reports.

[37]  A. Paul,et al.  Importance of Electrode Preparation Methodologies in Supercapacitor Applications , 2017, ACS omega.

[38]  R. Ramachandran,et al.  Synthesis of tin oxide/graphene (SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications , 2016 .

[39]  J. Shim,et al.  Electrochemical characterizations of LaMO3 (M = Co, Mn, Fe, and Ni) and partially substituted LaNixM1−xO3 (x = 0.25 or 0.5) for oxygen reduction and evolution in alkaline solution , 2015, Journal of Applied Electrochemistry.

[40]  Hee Jo Song,et al.  Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes , 2015, Nano Research.

[41]  P. Ajayan,et al.  Supercapacitor Operating At 200 Degrees Celsius , 2013, Scientific Reports.

[42]  Chenguo Hu,et al.  Synthesis of SnO2 Nanostructures and Their Application for Hydrogen Evolution Reaction , 2012, Catalysis Letters.

[43]  Yun‐Sung Lee,et al.  Electrochemical supercapacitor studies of hierarchical structured Co2+-substituted SnO2 nanoparticles by a hydrothermal method , 2012 .

[44]  Binggang Zhang,et al.  The FTIR studies of SnO2:Sb(ATO) films deposited by spray pyrolysis , 2011 .

[45]  Jinhuai Liu,et al.  Highly sensitive and selective butanone sensors based on cerium-doped SnO2 thin films , 2010 .

[46]  O. Scialdone,et al.  Electrochemical oxidation of organics at metal oxide electrodes: The incineration of oxalic acid at IrO2–Ta2O5 (DSA-O2) anode , 2009 .

[47]  Aicheng Chen,et al.  Influence of a nanoscale gold thin layer on Ti/SnO2-Sb2O5 electrodes , 2003 .

[48]  Jenny Nelson,et al.  Electron Dynamics in Nanocrystalline ZnO and TiO2 Films Probed by Potential Step Chronoamperometry and Transient Absorption Spectroscopy , 2002 .