Diffraction-free beams in fractional Schrödinger equation

We investigate the propagation of one-dimensional and two-dimensional (1D, 2D) Gaussian beams in the fractional Schrödinger equation (FSE) without a potential, analytically and numerically. Without chirp, a 1D Gaussian beam splits into two nondiffracting Gaussian beams during propagation, while a 2D Gaussian beam undergoes conical diffraction. When a Gaussian beam carries linear chirp, the 1D beam deflects along the trajectories z = ±2(x − x0), which are independent of the chirp. In the case of 2D Gaussian beam, the propagation is also deflected, but the trajectories align along the diffraction cone and the direction is determined by the chirp. Both 1D and 2D Gaussian beams are diffractionless and display uniform propagation. The nondiffracting property discovered in this model applies to other beams as well. Based on the nondiffracting and splitting properties, we introduce the Talbot effect of diffractionless beams in FSE.

[1]  N. Laskin,et al.  Fractional quantum mechanics , 2008, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Michael V Berry,et al.  Nonspreading wave packets , 1979 .

[3]  E. C. Oliveira,et al.  The fractional Schrödinger equation for delta potentials , 2010 .

[4]  Demetrios N. Christodoulides,et al.  Accelerating Optical Beams , 2013 .

[5]  J. Goodman Introduction to Fourier optics , 1969 .

[6]  Ralf Metzler,et al.  Fractional Calculus: An Introduction for Physicists , 2012 .

[7]  Fresnel diffraction patterns as accelerating beams , 2013, 1312.3477.

[8]  Yiqi Zhang,et al.  Automatic Fourier transform and self-Fourier beams due to parabolic potential , 2014, 1412.6648.

[9]  N. Laskin Fractional Schrödinger equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  M. Belić,et al.  Dual accelerating Airy-Talbot recurrence effect. , 2015, Optics letters.

[11]  M. Segev,et al.  Accelerating self-imaging: The Airy-Talbot effect , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[12]  Transmission through locally periodic potentials in space-fractional quantum mechanics , 2014 .

[13]  M. Naber Time fractional Schrödinger equation , 2004, math-ph/0410028.

[14]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[15]  K. Kowalski,et al.  Relativistic massless harmonic oscillator , 2010, 1002.0474.

[16]  P. Garbaczewski,et al.  Solving fractional Schrödinger-type spectral problems: Cauchy oscillator and Cauchy well , 2014, 1403.5668.

[17]  Roberto Morandotti,et al.  Nonparaxial Mathieu and Weber accelerating beams. , 2012, Physical review letters.

[18]  Mingyu Xu,et al.  Some solutions to the space fractional Schrödinger equation using momentum representation method , 2007 .

[19]  D. Christodoulides,et al.  Discrete-like diffraction dynamics in free space. , 2013, Optics express.

[20]  S. Bayin,et al.  Time fractional Schrödinger equation: Fox's H-functions and the effective potential , 2011, 1103.3295.

[21]  B. M. Fulk MATH , 1992 .

[22]  Demetrios N. Christodoulides,et al.  Coherent random walks in free space , 2014 .

[23]  Edmundo Capelas de Oliveira,et al.  Tunneling in fractional quantum mechanics , 2010, 1011.1948.

[24]  B. Stickler Potential condensed-matter realization of space-fractional quantum mechanics: the one-dimensional Lévy crystal. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  R. Morandotti,et al.  Nonlinear photonics and novel optical phenomena , 2012 .

[26]  W. Marsden I and J , 2012 .

[27]  D. Christodoulides,et al.  Self-healing properties of optical Airy beams. , 2008, Optics express.

[28]  M. Belić,et al.  Propagation Dynamics of a Light Beam in a Fractional Schrödinger Equation. , 2015, Physical review letters.

[29]  Xiaoyi Guo,et al.  Some physical applications of fractional Schrödinger equation , 2006 .

[30]  S. Longhi Fractional Schrödinger equation in optics. , 2015, Optics letters.

[31]  Bd Lavoisier Spectral properties of the massless relativistic harmonic oscillator , 2012 .

[32]  Yuri Luchko Fractional Schrödinger equation for a particle moving in a potential well , 2013 .

[33]  R. Laughlin Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations , 1983 .

[34]  D. Christodoulides,et al.  Accelerating finite energy Airy beams. , 2007, Optics letters.

[35]  Jianming Wen,et al.  The Talbot effect: recent advances in classical optics, nonlinear optics, and quantum optics , 2013 .

[36]  R. Herrmann Fractional Calculus: An Introduction for Physicists , 2011 .

[37]  Jacek K. Furdyna,et al.  The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles , 2012, Nature Physics.

[38]  D. Christodoulides,et al.  Self-accelerating Airy Beams: Generation, Control, and Applications , 2012 .