Use of eigendecomposition in a parameter sensitivity analysis of the Community Land Model

[1] This study explores the use of eigendecomposition in a sensitivity analysis of the Community Land Model CLM, revision 3.5, with respect to its parametrization. Latent heat, sensible heat, and photosynthesis are used as target variables. The eigendecomposition of a sensitivity matrix, containing numerically derived sensitivity measures, can be used to study parameter significance. Existing parameter ranking and selection methods are examined. Furthermore, a new parameter significance ranking index is proposed which is working in concert with a new proposed selection criterion. This methodology explicitly takes parameter covariations into account. The results are consistent and similar to the most elaborate method tested in this study, but the new method has fewer assumptions. The number of significant parameters depends on the degree of variation that a single parameter is allowed to generate in the cost function. The method declares two thirds out of 66 parameters to be significant model parameters for an allowed change of 1% and only 10 parameters for an allowed change of 10% of the cost function. The sensible heat flux is shown to be the least sensitive model output in comparison with latent heat or photosynthesis. Parameters that determine maximum carboxylation and the slope of stomatal conductance are very sensitive for photosynthesis, whereas soil water parameters are significant for latent heat and C4photosynthesis. It is concluded that the proposed procedure is parsimonious, can analyze sensitivities of more than one model output simultaneously, and helps to identify significant parameters while taking parameter interactions into account.

[1]  Robert Tibshirani,et al.  Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy , 1986 .

[2]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[3]  A. Pitman The evolution of, and revolution in, land surface schemes designed for climate models , 2003 .

[4]  Dennis D. Baldocchi,et al.  Estimating parameters in a land‐surface model by applying nonlinear inversion to eddy covariance flux measurements from eight FLUXNET sites , 2007 .

[5]  D. Rubin,et al.  A Research Agenda for Assessment and Propagation of Model Uncertainty , 1987 .

[6]  D. Hamby A review of techniques for parameter sensitivity analysis of environmental models , 1994, Environmental monitoring and assessment.

[7]  Hoshin Vijai Gupta,et al.  Model identification for hydrological forecasting under uncertainty , 2005 .

[8]  W. James Shuttleworth,et al.  A fully multiple-criteria implementation of the Sobol' method for parameter sensitivity analysis , 2012 .

[9]  Philippe Ciais,et al.  Optimizing a process‐based ecosystem model with eddy‐covariance flux measurements: A pine forest in southern France , 2007 .

[10]  I. E. Woodrow,et al.  Enzymatic Regulation of Photosynthetic CO2, Fixation in C3 Plants , 1988 .

[11]  Anthony J. Jakeman,et al.  Ten iterative steps in development and evaluation of environmental models , 2006, Environ. Model. Softw..

[12]  Sergei S. Kucherenko,et al.  Derivative based global sensitivity measures and their link with global sensitivity indices , 2009, Math. Comput. Simul..

[13]  Omar T. Farouki,et al.  The thermal properties of soils in cold regions , 1981 .

[14]  R. L. Dougherty,et al.  Applying an empirical model of stomatal conductance to three C-4 grasses , 1994 .

[15]  Zong-Liang Yang,et al.  Effects of Frozen Soil on Snowmelt Runoff and Soil Water Storage at a Continental Scale , 2006 .

[16]  B. Efron Jackknife‐After‐Bootstrap Standard Errors and Influence Functions , 1992 .

[17]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[18]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[19]  S. Seneviratne,et al.  Analysis of planetary boundary layer fluxes and land-atmosphere coupling in the regional climate model CLM , 2009 .

[20]  Stephen Sitch,et al.  Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics , 2005 .

[21]  J. Berry,et al.  A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species , 1980, Planta.

[22]  Ralf Takors,et al.  Sensitivity analysis for the reduction of complex metabolism models , 2004 .

[23]  W. Post,et al.  Parameter and prediction uncertainty in an optimized terrestrial carbon cycle model: Effects of constraining variables and data record length , 2011 .

[24]  Marko Scholze,et al.  Development of an ensemble-adjoint optimization approach to derive uncertainties in net carbon fluxes , 2011 .

[25]  C. Fortuin,et al.  Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory , 1973 .

[26]  C. Daniel One-at-a-Time Plans , 1973 .

[27]  R. Srinivasan,et al.  A global sensitivity analysis tool for the parameters of multi-variable catchment models , 2006 .

[28]  Zong-Liang Yang,et al.  Quantifying parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah land surface model over transition zones during the warm season , 2010 .

[29]  James S. Hodges,et al.  Uncertainty, Policy Analysis and Statistics , 1987 .

[30]  Peter P. Valko,et al.  Principal component analysis of kinetic models , 1985 .

[31]  G. Collatz,et al.  Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants , 1992 .

[32]  Gang Liu,et al.  Sensitivity, principal component and flux analysis applied to signal transduction: the case of epidermal growth factor mediated signaling , 2005, Bioinform..

[33]  Soroosh Sorooshian,et al.  Evaluating model performance and parameter behavior for varying levels of land surface model complexity , 2006 .

[34]  F. J. Carrera-Hueso,et al.  Análisis de sensibilidad estructural , 2011 .

[35]  S. V. Caemmerer,et al.  Biochemical models of leaf photosynthesis. , 2000 .

[36]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .

[37]  J. Deardorff Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation , 1978 .

[38]  A. Henderson‐sellers,et al.  Modeling soil moisture: A Project for Intercomparison of Land Surface Parameterization Schemes Phase 2(b) , 1996 .

[39]  J. Tenhunen,et al.  Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? , 2002 .

[40]  Peter E. Thornton,et al.  Technical Description of the Community Land Model (CLM) , 2004 .

[41]  John H. Seinfeld,et al.  Global sensitivity analysis—a computational implementation of the Fourier Amplitude Sensitivity Test (FAST) , 1982 .

[42]  Robert Clement,et al.  On the validation of models of forest CO2 exchange using eddy covariance data: some perils and pitfalls. , 2005, Tree physiology.

[43]  R. Giering,et al.  Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS) , 2005 .

[44]  J. Konrad,et al.  Thermal conductivity of base-course materials , 2005 .

[45]  C. Justice,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part II: The Generation of Global Fields of Terrestrial Biophysical Parameters from Satellite Data , 1996 .

[46]  Andrea Saltelli,et al.  An effective screening design for sensitivity analysis of large models , 2007, Environ. Model. Softw..

[47]  G. Collatz,et al.  Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer , 1991 .

[48]  Peter E. Thornton,et al.  The Partitioning of Evapotranspiration into Transpiration, Soil Evaporation, and Canopy Evaporation in a GCM: Impacts on Land–Atmosphere Interaction , 2007 .

[49]  J. Randerson,et al.  Technical Description of version 4.0 of the Community Land Model (CLM) , 2010 .

[50]  Piers J. Sellers,et al.  Relations between surface conductance and spectral vegetation indices at intermediate (100 m2 to 15 km2) length scales , 1992 .

[51]  Guang Lin,et al.  Sensitivity of surface flux simulations to hydrologic parameters based on an uncertainty quantification framework applied to the Community Land Model , 2012 .

[52]  Wolfgang Knorr,et al.  Uncertainties in global terrestrial biosphere modeling: 1. A comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme , 2001 .

[53]  I. Jolliffe Principal Component Analysis , 2005 .

[54]  Markus Reichstein,et al.  Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data , 2011 .

[55]  R. Dickinson,et al.  Effect of Surface Sublayer on Surface Skin Temperature and Fluxes , 1998 .

[56]  Lin Dong,et al.  Sobol’ sensitivity analysis of parameters in the common land model for simulation of water and energy fluxes , 2012, Earth Science Informatics.

[57]  Shusen Wang Evaluation of Water Stress Impact on the Parameter Values in Stomatal Conductance Models Using Tower Flux Measurement of a Boreal Aspen Forest , 2012 .

[58]  W. Collins,et al.  The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation , 2001 .

[59]  Gaylon S. Campbell,et al.  Soil physics with BASIC , 1985 .

[60]  K. Shuler,et al.  Nonlinear sensitivity analysis of multiparameter model systems , 1977 .

[61]  Peter E. Thornton,et al.  Improvements to the Community Land Model and their impact on the hydrological cycle , 2008 .

[62]  Matieyendou Lamboni,et al.  Derivative-based global sensitivity measures: General links with Sobol' indices and numerical tests , 2012, Math. Comput. Simul..

[63]  G. Hornberger,et al.  A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils , 1984 .

[64]  Soroosh Sorooshian,et al.  Parameter sensitivity analysis for different complexity land surface models using multicriteria methods , 2006 .

[65]  Constantinos C. Pantelides,et al.  Monte Carlo evaluation of derivative-based global sensitivity measures , 2009, Reliab. Eng. Syst. Saf..

[66]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[67]  A. Pitman,et al.  Evaluating the Performance of Land Surface Models , 2008 .

[68]  M. Anitescu,et al.  Applying Automatic Differentiation to the Community Land Model , 2012 .

[69]  S. Seneviratne,et al.  Land–atmosphere coupling and climate change in Europe , 2006, Nature.

[70]  P. Ciais,et al.  Europe-wide reduction in primary productivity caused by the heat and drought in 2003 , 2005, Nature.

[71]  Jery R. Stedinger,et al.  Water Resources Systems Planning And Management , 2006 .

[72]  Dan Rosbjerg,et al.  Land-surface modelling in hydrological perspective – a review , 2006 .

[73]  Keith W. Oleson,et al.  Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models , 2002 .

[74]  Benjamin Smith,et al.  Parameter uncertainties in the modelling of vegetation dynamics — effects on tree community structure and ecosystem functioning in European forest biomes , 2008 .

[75]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[76]  D. Vries Thermal properties of soils , 1963 .

[77]  Georg Wohlfahrt,et al.  Assessing parameter variability in a photosynthesis model within and between plant functional types using global Fluxnet eddy covariance data , 2011 .

[78]  W. J. Shuttleworth,et al.  Parameter estimation of a land surface scheme using multicriteria methods , 1999 .

[79]  Pierre Friedlingstein,et al.  Carbon–climate feedbacks: a review of model and observation based estimates , 2010 .

[80]  K. Davis,et al.  Sensitivity, uncertainty and time dependence of parameters in a complex land surface model , 2008 .

[81]  B. Iooss,et al.  Derivative based global sensitivity measures , 2014, 1412.2619.

[82]  William G. Nickling,et al.  SHEAR STRESS PARTITIONING IN SPARSELY VEGETATED DESERT CANOPIES , 1996 .

[83]  Gordon B. Bonan,et al.  Quantifying carbon‐nitrogen feedbacks in the Community Land Model (CLM4) , 2010 .