A Successive Description property of Monotone-Chain Polar Codes for Slepian-Wolf coding

We introduce a property that we call Successive Description property for Slepian Wolf coding. We show that Monotone-Chain Polar Codes can be used to construct low-complexity codes that satisfy this property. We discuss applications of this property to network coding problems.

[1]  Tracey Ho,et al.  A Random Linear Network Coding Approach to Multicast , 2006, IEEE Transactions on Information Theory.

[2]  Aditya Ramamoorthy,et al.  Separating distributed source coding from network coding , 2006, IEEE Transactions on Information Theory.

[3]  R. Yeung,et al.  Network information flow-multiple sources , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[4]  R. Urbanke,et al.  Asynchronous Slepian-Wolf coding via source-splitting , 1997, Proceedings of IEEE International Symposium on Information Theory.

[5]  R. A. McDonald,et al.  Noiseless Coding of Correlated Information Sources , 1973 .

[6]  Erdal Arikan,et al.  Source polarization , 2010, 2010 IEEE International Symposium on Information Theory.

[7]  Erdal Arikan Bilkent Polar coding for the Slepian-Wolf problem based on monotone chain rules , 2012, ISIT 2012.

[8]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.