Initial localization by set inversion

In this paper, initial localization problems are solved by using set-membership estimation. The method can be used with any robot and any kind of sensor(s), provided that a computable model of the environment/sensor interaction is available. With a pedagogical aim in mind, it is detailed in the case of the localization of a vehicle from range measurements in a polygonal environment. Salient properties of the method are as follows. First, it does not need any explicit management of matching hypotheses. Second, it is able to deal with ambiguous situations where several radically different vehicle configurations are consistent with the measurements. Third, it can be made robust to outliers. Fourth, it can deal with nonlinear observation models without any approximation. Fifth, the result is guaranteed in the sense that no configuration consistent with the data and the hypotheses can be missed.

[1]  Alan C. Schultz,et al.  Continuous localization using evidence grids , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[2]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[3]  Clark F. Olson,et al.  Probabilistic self-localization for mobile robots , 2000, IEEE Trans. Robotics Autom..

[4]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[5]  Federico Thomas,et al.  Set membership approach to the propagation of uncertain geometric information , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[6]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[7]  D. Meizel,et al.  Estimation of Mobile Robot Localization: Geometric Approaches , 1996 .

[8]  E. Walter,et al.  Guaranteed mobile robot tracking using interval analysis , 1999 .

[9]  E. Walter,et al.  Vehicle Localization from Inaccurate Telemetric Data: A Set-Inversion Approach , 1997 .

[10]  H. Durrant-Whyte,et al.  Mobile vehicle navigation in unknown environments: a multiple hypothesis approach , 1995 .

[11]  James L. Crowley,et al.  World modeling and position estimation for a mobile robot using ultrasonic ranging , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[12]  Olivier Lévêque Méthodes ensemblistes pour la localisation de véhicules , 1998 .

[13]  Alan C. Schultz,et al.  Unifying exploration, localization, navigation and planning through a common representation , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[14]  Fred C. Schweppe,et al.  Uncertain dynamic systems , 1973 .

[15]  Kurt Konolige,et al.  Markov Localization using Correlation , 1999, IJCAI.

[16]  D. Meizel,et al.  Multiple hypotheses generation for vehicle localization , 1997, 1997 European Control Conference (ECC).

[17]  Bruno Marhic,et al.  Geometrical matching for mobile robot localization , 2000, IEEE Trans. Robotics Autom..

[18]  Bernt Schiele,et al.  A comparison of position estimation techniques using occupancy grids , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[19]  Michael Drumheller,et al.  Mobile Robot Localization Using Sonar , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[21]  Eric Walter,et al.  Guaranteed nonlinear parameter estimation from bounded-error data via interval analysis , 1993 .

[22]  Y. Bar-Shalom Tracking and data association , 1988 .

[23]  J. M. M. Montiel,et al.  The SPmap: a probabilistic framework for simultaneous localization and map building , 1999, IEEE Trans. Robotics Autom..

[24]  Eric Walter,et al.  Set inversion via interval analysis for nonlinear bounded-error estimation , 1993, Autom..

[25]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[26]  Alessandro Saffiotti,et al.  Fuzzy landmark-based localization for a legged robot , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[27]  Wolfram Burgard,et al.  Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[28]  Dominique Meizel,et al.  Fusion of multi-sensor data: a geometric approach , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[29]  Bernt Schiele,et al.  Position estimation using principal components of range data , 1998, Robotics Auton. Syst..