Mapping the stereotyped behaviour of freely moving fruit flies

A frequent assumption in behavioural science is that most of an animal's activities can be described in terms of a small set of stereotyped motifs. Here, we introduce a method for mapping an animal's actions, relying only upon the underlying structure of postural movement data to organize and classify behaviours. Applying this method to the ground-based behaviour of the fruit fly, Drosophila melanogaster, we find that flies perform stereotyped actions roughly 50% of the time, discovering over 100 distinguishable, stereotyped behavioural states. These include multiple modes of locomotion and grooming. We use the resulting measurements as the basis for identifying subtle sex-specific behavioural differences and revealing the low-dimensional nature of animal motions.

[1]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[2]  J. Altmann,et al.  Observational study of behavior: sampling methods. , 1974, Behaviour.

[3]  Philip N. Lehner,et al.  Handbook of ethological methods , 1979 .

[4]  J. Hayashi [Sampling methods]. , 1982, Josanpu zasshi = The Japanese journal for midwife.

[5]  J. L. Gould Ethology: The Mechanisms and Evolution of Behavior , 1982 .

[6]  A. Grossmann,et al.  Cycle-octave and related transforms in seismic signal analysis , 1984 .

[7]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  É. Le Bourg The rate of living theory. Spontaneous locomotor activity, aging and longevity in Drosophila melanogaster. , 1987, Experimental gerontology.

[9]  C. Morandi,et al.  Registration of Translated and Rotated Images Using Finite Fourier Transforms , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[11]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[12]  Fernand Meyer,et al.  Topographic distance and watershed lines , 1994, Signal Process..

[13]  B. N. Chatterji,et al.  An FFT-based technique for translation, rotation, and scale-invariant image registration , 1996, IEEE Trans. Image Process..

[14]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[15]  R J Full,et al.  Templates and anchors: neuromechanical hypotheses of legged locomotion on land. , 1999, The Journal of experimental biology.

[16]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[17]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[18]  Hubertus Th. Jongen,et al.  Optimization theory , 2004 .

[19]  R. Strauss,et al.  Coordination of legs during straight walking and turning in Drosophila melanogaster , 1990, Journal of Comparative Physiology A.

[20]  B. Lau,et al.  Neuronal studies of decision making in the visual-saccadic system , 2004 .

[21]  W. Bialek,et al.  A sensory source for motor variation , 2005, Nature.

[22]  John Guckenheimer,et al.  The Dynamics of Legged Locomotion: Models, Analyses, and Challenges , 2006, SIAM Rev..

[23]  Devanand S. Manoli,et al.  Blueprints for behavior: genetic specification of neural circuitry for innate behaviors , 2006, Trends in Neurosciences.

[24]  Julie A. Theriot,et al.  A correlation-based approach to calculate rotation and translation of moving cells , 2006, IEEE Transactions on Image Processing.

[25]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[26]  Greg J. Stephens,et al.  Dimensionality and Dynamics in the Behavior of C. elegans , 2007, PLoS Comput. Biol..

[27]  Manuel Guizar-Sicairos,et al.  Efficient subpixel image registration algorithms. , 2008, Optics letters.

[28]  J. Guckenheimer,et al.  Estimating the phase of synchronized oscillators. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Pietro Perona,et al.  Automated monitoring and analysis of social behavior in Drosophila , 2009, Nature Methods.

[30]  Pietro Perona,et al.  High-throughput Ethomics in Large Groups of Drosophila , 2009, Nature Methods.

[31]  Gordon J. Berman,et al.  Automated hull reconstruction motion tracking (HRMT) applied to sideways maneuvers of free-flying insects , 2009, Journal of Experimental Biology.

[32]  Michael H Dickinson,et al.  Wing and body motion during flight initiation in Drosophila revealed by automated visual tracking , 2009, Journal of Experimental Biology.

[33]  Eamonn J. Keogh,et al.  Time series shapelets: a novel technique that allows accurate, interpretable and fast classification , 2010, Data Mining and Knowledge Discovery.

[34]  Noah D. Goodman,et al.  Optimal habits can develop spontaneously through sensitivity to local cost , 2010, Proceedings of the National Academy of Sciences.

[35]  M. Dickinson,et al.  A New Chamber for Studying the Behavior of Drosophila , 2010, PloS one.

[36]  William Bialek,et al.  Searching for simplicity in the analysis of neurons and behavior , 2010, Proceedings of the National Academy of Sciences.

[37]  J. Guckenheimer,et al.  Finding the dimension of slow dynamics in a rhythmic system , 2012, Journal of The Royal Society Interface.

[38]  W. Bialek,et al.  Emergence of long timescales and stereotyped behaviors in Caenorhabditis elegans , 2011, Proceedings of the National Academy of Sciences.

[39]  A. Cressant,et al.  Computerized video analysis of social interactions in mice , 2012, Nature Methods.

[40]  Laura J. Grundy,et al.  A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion , 2012, Proceedings of the National Academy of Sciences.

[41]  R. Mann,et al.  Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster , 2013, eLife.

[42]  Laurens van der Maaten,et al.  Barnes-Hut-SNE , 2013, ICLR.

[43]  Jamey S. Kain,et al.  Leg-tracking and automated behavioural classification in Drosophila , 2012, Nature Communications.

[44]  Michael C. Hout,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[45]  Kristin Branson,et al.  JAABA: interactive machine learning for automatic annotation of animal behavior , 2013, Nature Methods.

[46]  A. Büschges,et al.  Inter-leg coordination in the control of walking speed in Drosophila , 2013, Journal of Experimental Biology.