Gröbner methods for representations of combinatorial categories

Given a category C of a combinatorial nature, we study the following fundamental question: how does the combinatorial behavior of C affect the algebraic behavior of representations of C? We prove two general results. The first gives a combinatorial criterion for representations of C to admit a theory of Gr\"obner bases. From this, we obtain a criterion for noetherianity of representations. The second gives a combinatorial criterion for a general "rationality" result for Hilbert series of representations of C. This criterion connects to the theory of formal languages, and makes essential use of results on the generating functions of languages, such as the transfer-matrix method and the Chomsky-Sch\"utzenberger theorem. Our work is motivated by recent work in the literature on representations of various specific categories. Our general criteria recover many of the results on these categories that had been proved by ad hoc means, and often yield cleaner proofs and stronger statements. For example: we give a new, more robust, proof that FI-modules (originally introduced by Church-Ellenberg-Farb), and a family of natural generalizations, are noetherian; we give an easy proof of a generalization of the Lannes-Schwartz artinian conjecture from the study of generic representation theory of finite fields; we significantly improve the theory of $\Delta$-modules, introduced by Snowden in connection to syzygies of Segre embeddings; and we establish fundamental properties of twisted commutative algebras in positive characteristic.

[1]  N. Kuhn The Generic Representation Theory of Finite Fields: A Survey of Basic Structure , 2000 .

[2]  C. Nash-Williams On well-quasi-ordering infinite trees , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  Jordan S. Ellenberg,et al.  FI-modules and stability for representations of symmetric groups , 2012, 1204.4533.

[4]  J. Ellenberg,et al.  FI-modules over Noetherian rings , 2012, 1210.1854.

[5]  Contravariant Functors On Finite Sets And Stirling Numbers , 1999 .

[6]  Jan Draisma,et al.  Noetherianity up to Symmetry , 2013, 1310.1705.

[7]  Seth Sullivant,et al.  Finite Groebner bases in infinite dimensional polynomial rings and applications , 2009, 0908.1777.

[8]  Representation Stability , 2014, 1404.4065.

[9]  General linear and functor cohomology over finite fields , 1999, math/9909194.

[10]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[11]  Steven V. Sam,et al.  Noetherianity of some degree two twisted commutative algebras , 2015, 1501.06925.

[12]  Christopher J. Hillar,et al.  Corrigendum to "Finiteness theorems and algorithms for permutation invariant chains of Laurent lattice ideals" [J. Symb. Comput. 50(March 2013) 314-334] , 2016, J. Symb. Comput..

[13]  Maria O. Ronco Shuffle bialgebras , 2007, math/0703437.

[14]  Steven V. Sam,et al.  Introduction to twisted commutative algebras , 2012, 1209.5122.

[15]  T. Pirashvili Hodge decomposition for higher order Hochschild homology , 2000 .

[16]  Steven V. Sam,et al.  Representation stability and finite linear groups , 2014, 1408.3694.

[17]  Invariant Subspaces of the Ring of Functions on a Vector Space over a Finite Field , 1997 .

[18]  N. Kuhn Generic Representations of the Finite General Linear Groups and the Steenrod Algebra: I , 1994 .

[19]  T. Pirashvili Dold-Kan type theorem for $\Gamma$-groups , 2000 .

[20]  V. Ginzburg,et al.  Differential operators and BV structures in noncommutative geometry , 2007, 0710.3392.

[21]  Chris F. Woodcock,et al.  On the transcendence of certain series , 1989 .

[22]  P. Gabriel,et al.  Des catégories abéliennes , 1962 .

[23]  Claudiu Raicu Secant varieties of Segre–Veronese varieties , 2010, 1011.5867.

[24]  L. Schwartz Unstable Modules over the Steenrod Algebra and Sullivan's Fixed Point Set Conjecture , 1994 .

[25]  A. Khoroshkin,et al.  On generating series of finitely presented operads , 2012, 1202.5170.

[26]  Aurélien Djament,et al.  Sur l'homologie des groupes orthogonaux et symplectiques \`a coefficients tordus , 2008, 0808.4035.

[27]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[28]  Jenny Wilson FI_W-modules and stability criteria for representations of the classical Weyl groups , 2013, 1309.3817.

[29]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[30]  G. Andrews ENUMERATIVE COMBINATORICS, VOLUME 2 (Cambridge Studies in Advanced Mathematics 62) By R ICHARD P. S TANLEY : 581 pp., £45.00 (US$69.95), ISBN 0 521 56069 1 (Cambridge University Press, 1999). , 2000 .

[31]  Jan Draisma,et al.  Bounded-rank tensors are defined in bounded degree , 2011, 1103.5336.

[32]  Dock Bumpers,et al.  Volume 2 , 2005, Proceedings of the Ninth International Conference on Computer Supported Cooperative Work in Design, 2005..

[33]  J. Lannes,et al.  Autour de la cohomologie de MacLane des corps finis , 1994 .

[34]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[35]  Vladimir Dotsenko,et al.  Gröbner bases for operads , 2008, 0812.4069.

[36]  Luke Oeding,et al.  Tangential varieties of Segre–Veronese varieties , 2011 .

[37]  A. Meyers Reading , 1999, Language Teaching.

[38]  N. Kuhn Generic representations of the finite general linear groups and the Steenrod algebra: III , 1994 .

[39]  A. Suslin,et al.  Support varieties for infinitesimal group schemes , 1997 .

[40]  P. Hall,et al.  Finiteness Conditions for Soluble Groups , 1954 .

[41]  Randall Dougherty Functors on the category of finite sets , 1992 .

[42]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[43]  Miklós Bóna,et al.  Combinatorics of permutations , 2022, SIGA.

[44]  M. Barratt Twisted Lie algebras , 1978 .

[45]  Jean-Pierre Serre,et al.  Linear representations of finite groups , 1977, Graduate texts in mathematics.

[46]  Steven V. Sam,et al.  STABILITY PATTERNS IN REPRESENTATION THEORY , 2013, Forum of Mathematics, Sigma.

[47]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[48]  Igor Pak,et al.  Pattern avoidance is not P-recursive , 2015, ArXiv.

[49]  A. Suslin,et al.  Cohomology of finite group schemes over a field , 1997 .

[50]  Vladimir Dotsenko,et al.  Shuffle algebras, homology, and consecutive pattern avoidance , 2011, 1109.2690.

[51]  Wee Liang Gan,et al.  Noetherian property of infinite EI categories , 2014, 1407.8235.

[52]  ANDREW SNOWDEN SYZYGIES OF SEGRE EMBEDDINGS AND ∆-MODULES , 2011 .

[53]  G. Richter Noetherian Semigroup Rings with Several Objects , 1986 .

[54]  M. Hashimoto Determinantal ideals without minimal free resolutions , 1990, Nagoya Mathematical Journal.

[55]  N. Kuhn Generic representation theory of finite fields in nondescribing characteristic , 2014, 1405.0318.

[56]  John D. Wiltshire-Gordon Uniformly Presented Vector Spaces , 2014, 1406.0786.

[57]  Andrew Snowden,et al.  Syzygies of Segre embeddings and $\Delta$-modules , 2010, 1006.5248.

[58]  J. Draisma,et al.  Plücker varieties and higher secants of Sato's Grassmannian , 2014, 1402.1667.

[59]  Mike Zabrocki,et al.  Analytic aspects of the shuffle product , 2008, STACS.

[60]  Miklós Bóna Combinatorics of Permutations, Second Edition , 2012, Discrete mathematics and its applications.

[61]  Noam Chomsky,et al.  The Algebraic Theory of Context-Free Languages* , 1963 .

[62]  S. Crawford,et al.  Volume 1 , 2012, Journal of Diabetes Investigation.

[63]  D. E Cohen,et al.  On the laws of a metabelian variety , 1967 .

[64]  Saunders MacLane,et al.  On the Groups H(Π, n), II: Methods of Computation , 1954 .

[65]  Christopher J. Hillar,et al.  Finiteness theorems and algorithms for permutation invariant chains of Laurent lattice ideals , 2013, J. Symb. Comput..

[66]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[67]  David J. Buttler,et al.  Encyclopedia of Data Warehousing and Mining Second Edition , 2008 .

[68]  Thomas Church,et al.  Representation theory and homological stability , 2010, 1008.1368.