A [3]Rotaxane Host Selects Between Stereoisomers.

What has it got in its pockets? A new approach to the selective binding and reporting of stereoisomers using mechanical bonding to produce a well-defined three-dimensional binding pocket was recently reported by Beer and co-workers. The highly stereoselective binding of stereoisomers by the reported [3]rotaxane suggest that the use of the mechanical bond to engineer a binding pocket has great potential for the development of stereoselective hosts.

[1]  Jason Y. C. Lim,et al.  A Chiral Halogen-Bonding [3]Rotaxane for the Recognition and Sensing of Biologically Relevant Dicarboxylate Anions. , 2018, Angewandte Chemie.

[2]  S. Grimme,et al.  Functional Mechanically Interlocked Molecules: Asymmetric Organocatalysis with a Catenated Bifunctional Brønsted Acid. , 2017, Angewandte Chemie.

[3]  Jason Y. C. Lim,et al.  Enantioselective Anion Recognition by Chiral Halogen-Bonding [2]Rotaxanes. , 2017, Journal of the American Chemical Society.

[4]  R. Mitra,et al.  A bifunctional chiral [2]catenane based on 1,1'-binaphthyl-phosphates. , 2016, Chemical communications.

[5]  Sundus Erbas-Cakmak,et al.  Asymmetric Catalysis with a Mechanically Point-Chiral Rotaxane , 2016, Journal of the American Chemical Society.

[6]  Frank Glorius,et al.  Contemporary screening approaches to reaction discovery and development. , 2014, Nature chemistry.

[7]  Eric V Anslyn,et al.  Rapid optical methods for enantiomeric excess analysis: from enantioselective indicator displacement assays to exciton-coupled circular dichroism. , 2014, Accounts of chemical research.

[8]  Stephen M. Goldup,et al.  An Efficient Approach to Mechanically Planar Chiral Rotaxanes , 2014, Journal of the American Chemical Society.

[9]  P. Beer,et al.  A redox-active [3]rotaxane capable of binding and electrochemically sensing chloride and sulfate anions. , 2011, Chemical communications.

[10]  J. Sauvage,et al.  A [3]rotaxane with two porphyrinic plates acting as an adaptable receptor. , 2008, Journal of the American Chemical Society.

[11]  A. Slawin,et al.  A chemically-driven molecular information ratchet. , 2008, Journal of the American Chemical Society.

[12]  P. Beer,et al.  Anion templated assembly of mechanically interlocked structures. , 2007, Chemical Society reviews.

[13]  J. F. Stoddart,et al.  Helical chirality in donor-acceptor catenanes. , 2004, Organic letters.

[14]  R. Noyori Asymmetrische Katalyse: Kenntnisstand und Perspektiven (Nobel-Vortrag) Copyright© The Nobel Foundation 2002. – Wir danken der Nobel-Stiftung, Stockholm, für die Genehmigung zum Druck einer deutschen Fassung des Vortrags. , 2002 .

[15]  W. Knowles Asymmetrische Hydrierungen (Nobel-Vortrag) Copyright© The Nobel Foundation 2002. – Wir danken der Nobel-Stiftung, Stockholm, für die Genehmigung zum Druck einer deutschen Fassung des Vortrags. , 2002 .

[16]  W. Knowles Asymmetric hydrogenations (Nobel lecture). , 2002, Angewandte Chemie.

[17]  K. Sharpless,et al.  Searching for new reactivity (Nobel lecture). , 2002, Angewandte Chemie.

[18]  Ryoji Noyori,et al.  Asymmetric catalysis: science and opportunities (Nobel lecture). , 2002, Angewandte Chemie.

[19]  K. Sharpless,et al.  Auf der Suche nach neuer Reaktivität (Nobel-Vortrag) , 2002 .

[20]  M. Jennings,et al.  Gold(I) macrocycles and topologically chiral [2]catenanes. , 2002, Journal of the American Chemical Society.

[21]  J. Sauvage,et al.  A Topologically Chiral [2]Catenand , 1988 .

[22]  J. Sauvage,et al.  Ein topologisch chiraler [2]Catenand , 1988 .