WebSSQL-a query language for multimedia Web documents

We describe an SQL-like query language-WebSSQL-for retrieving desired Web pages. WebSSQL has several unique features. First, WebSSQL assumes that each Web page is a multimedia document consisting of structured data, text data and possibly image data. Second, WebSSQL treats each page as a node in a directed graph composed of many Web pages and links among them. Third, WebSSQL is similarity-based meaning that the retrieved Web pages will be ranked based on their closeness to a given query. The traditional SQL does not support similarity-based retrieval and ranking. With WebSSQL, users can specify their search needs more precisely, leading to more accurate retrieval of useful information.

[1]  Alberto O. Mendelzon,et al.  Querying the World Wide Web , 1996, Fourth International Conference on Parallel and Distributed Information Systems.

[2]  S. Sclaroff,et al.  Combining textual and visual cues for content-based image retrieval on the World Wide Web , 1998, Proceedings. IEEE Workshop on Content-Based Access of Image and Video Libraries (Cat. No.98EX173).

[3]  Zhongfei Zhang,et al.  Identifying human faces in general appearances , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[4]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Alberto O. Mendelzon,et al.  Database techniques for the World-Wide Web: a survey , 1998, SGMD.

[6]  Oliver A. McBryan,et al.  GENVL and WWWW: Tools for taming the Web , 1994, WWW Spring 1994.

[7]  Rohini K. Srihari,et al.  Geometric histogram: a distribution of geometric configurations of color subsets , 1999, Electronic Imaging.

[8]  Alberto O. Mendelzon,et al.  Finding Regular Simple Paths in Graph Databases , 1989, SIAM J. Comput..

[9]  Jennifer Widom,et al.  The Lorel query language for semistructured data , 1997, International Journal on Digital Libraries.

[10]  Ricardo A. Baeza-Yates,et al.  Proximal nodes: a model to query document databases by content and structure , 1997, TOIS.

[11]  Ramin Zabih,et al.  Histogram refinement for content-based image retrieval , 1996, Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96.

[12]  Clement T. Yu,et al.  Priniples of Database Query Processing for Advanced Applications , 1997 .

[13]  Ramin Zabih,et al.  Histogram Re nement for Content-Based Image RetrievalGreg , 1996 .

[14]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[15]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[16]  James Allan,et al.  Automatic Retrieval With Locality Information Using SMART , 1992, TREC.

[17]  David Konopnicki,et al.  Information gathering in the World-Wide Web: the W3QL query language and the W3QS system , 1998, TODS.

[18]  Rohini K. Srihari,et al.  Spatial color histograms for content-based image retrieval , 1999, Proceedings 11th International Conference on Tools with Artificial Intelligence.

[19]  Hassane Essafi,et al.  Image Database Indexing and Retrieval Using the Fractal Transform , 1997, ECMAST.

[20]  C. Lee Giles,et al.  Accessibility of information on the web , 1999, Nature.

[21]  David Konopnicki,et al.  W3QS: A Query System for the World-Wide Web , 1995, VLDB.

[22]  Jennifer Widom,et al.  Querying Semistructured Heterogeneous Information , 1997, J. Syst. Integr..

[23]  Alberto O. Mendelzon,et al.  Applications of a Web Query Language , 1997, Comput. Networks.

[24]  Rohini K. Srihari,et al.  Face detection and its applications in intelligent and focused image retrieval , 1999, Proceedings 11th International Conference on Tools with Artificial Intelligence.

[25]  Jing Huang,et al.  Image indexing using color correlograms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Weiyi Meng,et al.  Using the Structure of HTML Documents to Improve Retrieval , 1997, USENIX Symposium on Internet Technologies and Systems.

[27]  R. Manmatha,et al.  Retrieving images by appearance , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[28]  Michael J. Swain,et al.  View-Based Techniques for Searching for Objects and Textures , 1995, ACCV.

[29]  Joachim M. Buhmann,et al.  Non-parametric similarity measures for unsupervised texture segmentation and image retrieval , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.