Analysis and numerical solution of coupled volume-surface reaction-diffusion systems with application to cell biology

We consider the numerical solution of coupled volume-surface reaction-diffusion systems having a detailed balance equilibrium. Based on the conservation of mass, an appropriate quadratic entropy functional is identified and an entropy-entropy dissipation inequality is proven. This allows us to show exponential convergence to equilibrium by the entropy method. We then investigate the discretization of the system by a finite element method and an implicit time stepping scheme including the domain approximation by polyhedral meshes. Mass conservation and exponential convergence to equilibrium are established on the discrete level by arguments similar to those on the continuous level and we obtain estimates of optimal order for the discretization error which hold uniformly in time. Some numerical tests are presented to illustrate these theoretical results. The analysis and the numerical approximation are discussed in detail for a simple model problem. The basic arguments however apply also in a more general context. This is demonstrated by investigation of a particular volume-surface reaction-diffusion system arising as a mathematical model for asymmetric stem cell division.

[1]  K. Fellner,et al.  Quasi-steady-state approximation and numerical simulation for a volume-surface reaction-diffusion system , 2014, 1408.1303.

[2]  Takashi Nishimura,et al.  Linking Cell Cycle to Asymmetric Division: Aurora-A Phosphorylates the Par Complex to Regulate Numb Localization , 2008, Cell.

[3]  V. Thomée,et al.  The lumped mass finite element method for a parabolic problem , 1985, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[4]  Clément Cancès,et al.  Numerical Analysis of a Robust Free Energy Diminishing Finite Volume Scheme for Parabolic Equations with Gradient Structure , 2015, Found. Comput. Math..

[5]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[6]  K. Mechtler,et al.  The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl , 2003, Nature.

[7]  Clément Cancès,et al.  Numerical analysis of a robust entropy-diminishing Finite Volume scheme for parabolic equations with gradient structure , 2019 .

[8]  Mary Fanett A PRIORI L2 ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS TO PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS , 1973 .

[9]  K. Deckelnick,et al.  Optimal error Estimates for the Stokes and Navier–Stokes equations with slip–boundary condition , 1999 .

[10]  Klaus Gärtner,et al.  Energy estimates for continuous and discretized electro-reaction-diffusion systems , 2008 .

[11]  James C. Schaff,et al.  Diffusion on a curved surface coupled to diffusion in the volume: Application to cell biology , 2007, J. Comput. Phys..

[12]  L. R. Scott Finite element techniques for curved boundaries , 1973 .

[13]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[14]  Juergen A. Knoblich,et al.  Quantitative Analysis of Protein Dynamics during Asymmetric Cell Division , 2005, Current Biology.

[15]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[16]  A reaction-diffusion system modelling asymmetric stem-cell division: existence, uniqueness, numerical simulation and rigorous quasi-steady-state approximation , 2014 .

[17]  Ansgar Jungel,et al.  Entropy-dissipating semi-discrete Runge-Kutta schemes for nonlinear diffusion equations , 2015, 1506.07040.

[18]  G. Gilmer,et al.  An analysis of combined surface and volume diffusion processes in crystal growth: II. Asymmetric capture at steps , 1974 .

[19]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[20]  M. Wheeler A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .

[21]  Claire Chainais-Hillairet,et al.  ENTROPY-DISSIPATIVE DISCRETIZATION OF NONLINEAR DIFFUSION EQUATIONS AND DISCRETE BECKNER INEQUALITIES ∗ , 2013, 1303.3791.

[22]  Etienne Emmrich,et al.  Entropy-stable and entropy-dissipative approximations of a fourth-order quantum diffusion equation , 2014, Numerische Mathematik.

[23]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[24]  Hans Z. Munthe-Kaas,et al.  Topics in structure-preserving discretization* , 2011, Acta Numerica.

[25]  C. M. Elliott,et al.  Finite element analysis for a coupled bulk-surface partial differential equation , 2013 .

[26]  Bao Q. Tang,et al.  The entropy method for reaction-diffusion systems without detailed balance: first order chemical reaction networks , 2015, 1504.08221.

[27]  Valerie Daggett,et al.  The complete folding pathway of a protein from nanoseconds to microseconds , 2003, Nature.

[28]  Andreas Günther,et al.  Hamburger Beiträge zur Angewandten Mathematik Finite element approximation of Dirichlet boundary control for elliptic PDEs on two-and three-dimensional curved domains , 2008 .