Analysis and numerical solution of coupled volume-surface reaction-diffusion systems with application to cell biology
暂无分享,去创建一个
Herbert Egger | Jan-Frederik Pietschmann | Bao Quoc Tang | Klemens Fellner | H. Egger | Jan-Frederik Pietschmann | K. Fellner | B. Tang
[1] K. Fellner,et al. Quasi-steady-state approximation and numerical simulation for a volume-surface reaction-diffusion system , 2014, 1408.1303.
[2] Takashi Nishimura,et al. Linking Cell Cycle to Asymmetric Division: Aurora-A Phosphorylates the Par Complex to Regulate Numb Localization , 2008, Cell.
[3] V. Thomée,et al. The lumped mass finite element method for a parabolic problem , 1985, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.
[4] Clément Cancès,et al. Numerical Analysis of a Robust Free Energy Diminishing Finite Volume Scheme for Parabolic Equations with Gradient Structure , 2015, Found. Comput. Math..
[5] L. Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .
[6] K. Mechtler,et al. The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl , 2003, Nature.
[7] Clément Cancès,et al. Numerical analysis of a robust entropy-diminishing Finite Volume scheme for parabolic equations with gradient structure , 2019 .
[8] Mary Fanett. A PRIORI L2 ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS TO PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS , 1973 .
[9] K. Deckelnick,et al. Optimal error Estimates for the Stokes and Navier–Stokes equations with slip–boundary condition , 1999 .
[10] Klaus Gärtner,et al. Energy estimates for continuous and discretized electro-reaction-diffusion systems , 2008 .
[11] James C. Schaff,et al. Diffusion on a curved surface coupled to diffusion in the volume: Application to cell biology , 2007, J. Comput. Phys..
[12] L. R. Scott. Finite element techniques for curved boundaries , 1973 .
[13] C. DeWitt-Morette,et al. Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .
[14] Juergen A. Knoblich,et al. Quantitative Analysis of Protein Dynamics during Asymmetric Cell Division , 2005, Current Biology.
[15] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[17] Ansgar Jungel,et al. Entropy-dissipating semi-discrete Runge-Kutta schemes for nonlinear diffusion equations , 2015, 1506.07040.
[18] G. Gilmer,et al. An analysis of combined surface and volume diffusion processes in crystal growth: II. Asymmetric capture at steps , 1974 .
[19] C. M. Elliott,et al. Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.
[20] M. Wheeler. A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .
[21] Claire Chainais-Hillairet,et al. ENTROPY-DISSIPATIVE DISCRETIZATION OF NONLINEAR DIFFUSION EQUATIONS AND DISCRETE BECKNER INEQUALITIES ∗ , 2013, 1303.3791.
[22] Etienne Emmrich,et al. Entropy-stable and entropy-dissipative approximations of a fourth-order quantum diffusion equation , 2014, Numerische Mathematik.
[23] Charles M. Elliott,et al. Finite elements on evolving surfaces , 2007 .
[24] Hans Z. Munthe-Kaas,et al. Topics in structure-preserving discretization* , 2011, Acta Numerica.
[25] C. M. Elliott,et al. Finite element analysis for a coupled bulk-surface partial differential equation , 2013 .
[26] Bao Q. Tang,et al. The entropy method for reaction-diffusion systems without detailed balance: first order chemical reaction networks , 2015, 1504.08221.
[27] Valerie Daggett,et al. The complete folding pathway of a protein from nanoseconds to microseconds , 2003, Nature.
[28] Andreas Günther,et al. Hamburger Beiträge zur Angewandten Mathematik Finite element approximation of Dirichlet boundary control for elliptic PDEs on two-and three-dimensional curved domains , 2008 .