Gain measurements in 1.3 µm InGaAsP-InP double heterostructure lasers

The net gain per unit length ( G ) versus current ( I ) is measured at various temperatures for 1.3 μm InGaAsP-InP double heterostructure lasers. G is found to vary linearly with the current I at a given temperature. The gain bandwidth is found to decrease with decreasing temperature. The lasing photon energy decreases at 0.325 meV/K with increasing temperature. Also, the slope dG/dI at the lasing photon energies decreases with increasing temperature. This decrease is more rapid for T > \sim210 K. This faster decrease is consistent with the observed higher temperature dependence of threshold (low T 0 at high temperatures) of 1.3 μm InGaAsP lasers. A carrier loss mechanism, due to Auger recombination, also predicts that dG/dI should decrease much faster with increasing temperature at high temperatures. We also find that the slope dG/dI decreases slowly with increasing temperature for a GaAs laser, which is consistent with the observed temperature dependence of threshold of these lasers.

[1]  M. Pilkuhn,et al.  Temperature dependence of optical gain spectra in GaInAsP/InP double‐heterostructure lasers , 1981 .

[2]  M. Asada,et al.  The temperature dependence of the threshold current of GaInAsP/InP DH lasers , 1981, IEEE Journal of Quantum Electronics.

[3]  Y. Horikoshi,et al.  Temperature Sensitive Threshold Current of InGaAsP–InP Double Heterostructure Lasers , 1979 .

[4]  Niloy K. Dutta,et al.  Gain‐current relation for In0.72Ga0.28As0.6P0.4 lasers , 1981 .

[5]  M. Takusagawa,et al.  Temperature characteristics of threshold current in InGaAsP/InP double‐heterostructure lasers , 1980 .

[6]  J. Donnelly,et al.  Gain spectra in GaInAsP/InP proton-bombarded stripe-geometry DH lasers , 1981 .

[7]  B. Hakki,et al.  Gain spectra in GaAs double−heterostructure injection lasers , 1975 .

[8]  M. Adams,et al.  Phase and group indices for double heterostructure lasers , 1979 .

[9]  T. Ikegami,et al.  Reflectivity of mode at facet and oscillation mode in double-heterostructure injection lasers , 1972 .

[10]  C. Hwang,et al.  Threshold behavior of (GaAl)As‐GaAs lasers at low temperatures , 1978 .

[11]  R. Nelson Near‐equilibrium LPE growth of low threshold current density In1−xGaxAsyP1−y(λ=1.35 μm) DH lasers , 1979 .

[12]  D. Rode How much Al in the AlGaAs–GaAs laser? , 1974 .

[13]  F. Stern Gain-current relation for GaAs lasers with n-type and undoped active layers , 1973 .

[14]  Niloy K. Dutta,et al.  Calculated temperature dependence of threshold current of GaAs‐AlxGa1−xAs double heterostructure lasers , 1981 .

[15]  G. Henshall,et al.  Nonradiative carrier loss and temperature sensitivity of threshold in 1.27 μm (GaIn)(AsP)/InP d.h. lasers , 1980 .

[16]  R. Nahory,et al.  Temperature dependence of InGaAsP double-heterostructure laser characteristics , 1979 .

[17]  Frank Stern,et al.  Spontaneous and Stimulated Recombination Radiation in Semiconductors , 1964 .

[18]  N. Dutta,et al.  Temperature dependence of threshold of InGaAsP/InP double‐heterostructure lasers and Auger recombination , 1981 .

[19]  Niloy K. Dutta,et al.  Temperature dependence of threshold and electrical characteristics of InGaAsP-InP d.h. lasers , 1980 .

[20]  M. Takusagawa,et al.  Theoretical and experimental study of threshold characteristics in InGaAsP/InP DH lasers , 1979 .

[21]  J. Shah,et al.  Hot‐carrier effects in 1.3‐μ In1−xGaxAsyP1−y light emitting diodes , 1981 .

[22]  N. Dutta Calculated absorption, emission, and gain in In0.72Ga0.28As0.6P0.4 , 1980 .

[23]  A. Sugimura,et al.  Band-to-band Auger recombination effect on InGaAsP laser threshold , 1981 .

[24]  Frank Stern,et al.  Calculated spectral dependence of gain in excited GaAs , 1976 .

[25]  Niloy K. Dutta,et al.  The case for Auger recombination in In1−xGaxAsyP1−y , 1982 .