Benchmark problems for nonlinear system identification and control using Soft Computing methods: Need and overview

HighlightsCollection of 13 benchmark problems described in detail in standardized way.General assessment criteria as well as problem-specific tests specified.Benchmarks span from simple artificial systems to complex entire industrial plants.Many domains covered incl. drives, mechatronics, chemical plants, wind turbines.Examples of use in Soft Computing community are provided for each problem. Using benchmark problems to demonstrate and compare novel methods to the work of others could be more widely adopted by the Soft Computing community. This article contains a collection of several benchmark problems in nonlinear control and system identification, which are presented in a standardized format. Each problem is augmented by examples where it has been adopted for comparison. The selected examples range from component to plant level problems and originate mainly from the areas of mechatronics/drives and process systems. The authors hope that this overview contributes to a better adoption of benchmarking in method development, test and demonstration.

[1]  Horst Schulte,et al.  Observer Design Using T-S Fuzzy Systems for Pressure Estimation in Hydrostatic Transmissions , 2009, 2009 Ninth International Conference on Intelligent Systems Design and Applications.

[2]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .

[3]  Yucai Zhu,et al.  Identification of multi-model LPV models with two scheduling variables , 2012 .

[4]  Mohammed Chadli,et al.  State estimation via multiple observer with unknown inputs : Application to the three tank system , 2003 .

[5]  Andreas Kugi,et al.  Modeling and simulation of a hydrostatic transmission with variable-displacement pump , 2000 .

[6]  Veit Hagenmeyer,et al.  Comparative evaluation of nonlinear model predictive and flatness-based two-degree-of-freedom control design in view of industrial application , 2007 .

[7]  X. Wang,et al.  Nonlinear identification of alstom gasifier based on wiener model , 2009, 2009 International Conference on Sustainable Power Generation and Supply.

[8]  Jochen Twele,et al.  Wind Power Plants , 2002 .

[9]  Seyed Abbas Taher,et al.  Optimal gain scheduling controller design of a pitch-controlled VS-WECS using DE optimization algorithm , 2013, Appl. Soft Comput..

[10]  Andrew Pike,et al.  Alstom Benchmark Challenge II on Gasifier Control , 2006 .

[11]  Sigurd Skogestad,et al.  Self-optimizing control of a large-scale plant: The Tennessee Eastman process , 2001 .

[12]  G. V. Puskorius,et al.  Neural network control of an unstable process , 1993, Proceedings of 36th Midwest Symposium on Circuits and Systems.

[13]  S. Skogestad DYNAMICS AND CONTROL OF DISTILLATION COLUMNS A tutorial introduction , 1997 .

[14]  A. Q. Khan,et al.  Robust fault detection in nonlinear systems: A Three-Tank Benchmark application , 2010, 2010 Conference on Control and Fault-Tolerant Systems (SysTol).

[15]  Yi Cao,et al.  Nonlinear model predictive control for the ALSTOM gasifier , 2006 .

[16]  Veit Hagenmeyer,et al.  Design of adaptive feedforward control under input constraints for a benchmark CSTR based on a BVP solver , 2009, Comput. Chem. Eng..

[17]  János Abonyi,et al.  Effective optimization for fuzzy model predictive control , 2004, IEEE Transactions on Fuzzy Systems.

[18]  Balazs Feil,et al.  Cluster Analysis for Data Mining and System Identification , 2007 .

[19]  N. Peric,et al.  Clustering-based identification of a piecewise affine electronic throttle model , 2005, 31st Annual Conference of IEEE Industrial Electronics Society, 2005. IECON 2005..

[20]  K. Suresh Manic,et al.  Application of Fuzzy Model Predictive Control in Multivariable Control of Distillation Column , 2010 .

[21]  Andreas Kroll,et al.  Zur physikalischen und datengetriebenen Modellbildung von Systemen mit Reibung: Methoden und Anwendung auf Kfz-Drosselklappen , 2013, Autom..

[22]  Reza Eslamloueyan,et al.  Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennessee-Eastman process , 2011, Appl. Soft Comput..

[23]  Guo-Ping Liu,et al.  Improving the performance of the ALSTOM baseline controller using multiobjective optimisation , 2006 .

[24]  Andreas Kroll,et al.  Computational Intelligence: Eine Einführung in Probleme, Methoden und technische Anwendungen , 2013 .

[25]  Rudibert King,et al.  Combined Feedback–Feedforward Control of Wind Turbines Using State-Constrained Model Predictive Control , 2013, IEEE Transactions on Control Systems Technology.

[26]  Ioannis B. Theocharis,et al.  A GA-based fuzzy modeling approach for generating TSK models , 2002, Fuzzy Sets Syst..

[27]  Peter Fogh Odgaard,et al.  Fault tolerant control of wind turbines: a benchmark model , 2009 .

[28]  C.W. Anderson,et al.  Learning to control an inverted pendulum using neural networks , 1989, IEEE Control Systems Magazine.

[29]  Jan W. Owsiński,et al.  Book reviews: ''Cluster analysis for data mining and system identification'' by János Abonyi and Balázs Feil , 2008 .

[30]  Sabine Van Huffel,et al.  Departement Elektrotechniek ESAT-SISTA / TR 2004-51 Application of Structured Total Least Squares for System Identification and Model Reduction 1 , 2007 .

[31]  Xavier Brun,et al.  Systematic control of an electropneumatic system: integrator backstepping and sliding mode control , 2006, IEEE Transactions on Control Systems Technology.

[32]  Mark Beale,et al.  Neural Network Toolbox™ User's Guide , 2015 .

[33]  T. J. McAvoy,et al.  Feasibility of Decoupling in Conventionally Controlled Distillation Columns , 1980 .

[34]  Alireza Fatehi,et al.  Multivariable GA-Based Identification of TS Fuzzy Models: MIMO Distillation Column Model Case Study , 2007, 2007 IEEE International Fuzzy Systems Conference.

[35]  Kyoung Kwan Ahn,et al.  Velocity control of a secondary controlled closed-loop hydrostatic transmission system using an adaptive fuzzy sliding mode controller , 2013 .

[36]  Kazuo Tanaka,et al.  An approach to fuzzy control of nonlinear systems: stability and design issues , 1996, IEEE Trans. Fuzzy Syst..

[37]  Miroslav Fikar,et al.  Model predictive control of a CSTR: A hybrid modeling approach , 2010 .

[38]  D. Thomasset,et al.  A comparative study between two control laws of an electropneumatic actuator , 1999, 1999 European Control Conference (ECC).

[39]  Mohd Azlan Hussain,et al.  Fault diagnosis of Tennessee Eastman process with multi- scale PCA and ANFIS , 2013 .

[40]  Harald Aschemann,et al.  Model-Based Nonlinear Trajectory Control of a Drive Chain with Hydrostatic Transmission , 2009 .

[41]  Horst Schulte,et al.  Control-oriented modelling of wind turbines using a Takagi-Sugeno model structure , 2012, 2012 IEEE International Conference on Fuzzy Systems.

[42]  Lee A. Feldkamp,et al.  Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks , 1994, IEEE Trans. Neural Networks.

[43]  Andreas Kroll,et al.  Nonlinear Black Box Modelling – Fuzzy Networks versus Neural Networks , 1999, Neural Computing & Applications.

[44]  O. Nelles Nonlinear System Identification , 2001 .

[45]  Jianqiang Yi,et al.  Upswing and stabilization control of inverted pendulum system based on the SIRMs dynamically connected fuzzy inference model , 2001, Fuzzy Sets Syst..

[46]  David Schlipf,et al.  Nonlinear model predictive control of wind turbines using LIDAR , 2013 .

[47]  J. Jonkman,et al.  Definition of a 5-MW Reference Wind Turbine for Offshore System Development , 2009 .

[48]  Dimitry Gorinevsky,et al.  Sampled-Data Indirect Adaptive Control of Bioreactor Using Affine Radial Basis Function Network Architecture , 1997 .

[49]  Fabrice Druaux,et al.  Indirect neural control for plant-wide systems: Application to the Tennessee Eastman Challenge Process , 2010, Comput. Chem. Eng..

[50]  Karim Salahshoor,et al.  A novel online affine model identification of multivariable processes using adaptive neuro-fuzzy networks , 2010 .

[51]  Dusan Krokavec,et al.  Stabilizing Fuzzy Output Control for a Class of Nonlinear Systems , 2013, Adv. Fuzzy Syst..

[52]  Andreas Kroll,et al.  On methods for automated modeling of dynamic systems with friction and their application to electro-mechanical throttles , 2010, 49th IEEE Conference on Decision and Control (CDC).

[53]  E. Richard,et al.  Comparison Between Linear and Nonlinear Control of an Electropneumatic Servodrive , 1996 .

[54]  Andreas Kroll,et al.  Probability-based global state detection of complex technical systems and application to mobile working machines , 2009, 2009 European Control Conference (ECC).

[55]  Gang Feng,et al.  Analysis and design for a class of complex control systems Part I: Fuzzy modelling and identification , 1997, Autom..

[56]  Horst Schulte,et al.  Fuzzy state feedback gain scheduling control of servo-pneumatic actuators , 2004 .

[57]  Sebastian Engell,et al.  Estimating the Prediction Uncertainty of Dynamic Neural Network Process Models , 2004 .

[58]  Lyle H. Ungar,et al.  A bioreactor benchmark for adaptive network-based process control , 1990 .

[59]  Serdar Iplikci,et al.  A support vector machine based control application to the experimental three-tank system. , 2010, ISA transactions.

[60]  Horst Schulte Control-Oriented Modeling of Hydrostatic Transmissions using Takagi-Sugeno Fuzzy Systems , 2007, 2007 IEEE International Fuzzy Systems Conference.

[61]  Chi-Tsung Huang,et al.  Estimate of process compositions and plantwide control from multiple secondary measurements using artificial neural networks , 2003, Comput. Chem. Eng..

[62]  Salem Al-Assadi Neural Network-Based Model Reference Adaptive Control for Electronic Throttle Systems , 2007 .

[63]  Serdar Iplikci,et al.  Support vector machines based neuro-fuzzy control of nonlinear systems , 2010, Neurocomputing.

[64]  B. Heiming,et al.  Definition of the three-tank benchmark problem for controller reconfiguration , 1999, 1999 European Control Conference (ECC).

[65]  William L. Luyben,et al.  Process Modeling, Simulation and Control for Chemical Engineers , 1973 .

[66]  W. Thomas Miller,et al.  A challenging set of control problems , 1990 .

[67]  Kadir Erkan,et al.  Soft computing and signal processing based active fault tolerant control for benchmark process , 2009, Neural Computing and Applications.

[68]  Hooshang Jazayeri-Rad,et al.  Application of Adaptive Local Linear Model Tree for Nonlinear Identification of Heat Recovery Steam Generator System Based on Experimental Data , 2010, 2010 Fourth UKSim European Symposium on Computer Modeling and Simulation.

[69]  Andreas Kroll,et al.  On identification of piecewise-affine models for systems with friction and its application to electro-mechanical throttles , 2012 .

[70]  Sebastian Engell,et al.  Gain-scheduling trajectory control of a continuous stirred tank reactor , 1998 .

[71]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[72]  F. Bianchi,et al.  Wind turbine control systems , 2006 .

[73]  Kanya Tanaka,et al.  Intelligent control for pneumatic servo system , 2003, SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).

[74]  João Miguel da Costa Sousa,et al.  Fault accommodation of an experimental three tank system using fuzzy predictive control , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[75]  A. Farag,et al.  Structure selection and tuning of multi-variable PID controllers for an industrial benchmark problem , 2006 .

[76]  Horst Schulte,et al.  Actuator fault diagnosis and fault-tolerant control of wind turbines using a Takagi-Sugeno sliding mode observer , 2013, 2013 Conference on Control and Fault-Tolerant Systems (SysTol).

[77]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[78]  Ginalber Luiz de Oliveira Serra,et al.  An IV-QR Algorithm for Neuro-Fuzzy Multivariable Online Identification , 2007, IEEE Transactions on Fuzzy Systems.

[79]  Igor Skrjanc,et al.  Globally stable direct fuzzy model reference adaptive control , 2003, Fuzzy Sets Syst..

[80]  Okyay Kaynak,et al.  A novel analysis and design of a neural network assisted nonlinear controller for a bioreactor , 1999 .