The role of path loss on the selection of the operating bands of UWB systems

We performed a propagation experiment in a modern office building in Rome, Italy. The propagation measurements are based on the use of a vector network analyzer (VNA) over the band 2-12 GHz, with a frequency resolution of 5 MHz. We propose a novel analysis of the dependence of path loss laws on the carrier frequency and bandwidth. Our experimental results show that the path loss exponent strongly depends on the carrier frequency. The path loss exponents increase with the increasing carrier frequency for the line-of-sight (LOS) scenarios, while exhibit an opposite behavior for the non-line-of-sight (NLOS) data. We explain this behavior by the frequency dependence of the reflection coefficient of the walls surrounding the transmitter. Indeed, the lowest frequencies (2-5 GHz) are reflected, while the highest frequencies (up to 12 GHz) pass through the walls.

[1]  V. Tarokh,et al.  A statistical path loss model for in-home UWB channels , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[2]  V. Hovinen,et al.  Ultra wideband indoor radio channel models: preliminary results , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[3]  L. Talbi Effect of frequency carrier on indoor propagation channel , 2000 .

[4]  Dajana Cassioli,et al.  UWB propagation measurements by PN-sequence channel sounding , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[5]  Ada S. Y. Poon,et al.  Indoor multiple-antenna channel characterization from 2 to 8 GHz , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[6]  J. Kunisch,et al.  Measurement results and modeling aspects for the UWB radio channel , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).