High Reynolds number Navier–Stokes solutions and boundary layer separation induced by a rectilinear vortex

Abstract We compute the solutions of Prandtl’s and Navier–Stokes equations for the two dimensional flow induced by a rectilinear vortex interacting with a boundary in the half plane. For this initial datum Prandtl’s equation develops, in a finite time, a separation singularity. We investigate the different stages of unsteady separation for Navier–Stokes solution at different Reynolds numbers Re = 103–105, and we show the presence of a large-scale interaction between the viscous boundary layer and the inviscid outer flow. We also see a subsequent stage, characterized by the presence of a small-scale interaction, which is visible only for moderate-high Re numbers Re = 104–105. We also investigate the asymptotic validity of boundary layer theory by comparing Prandtl’s solution to Navier–Stokes solutions during the various stages of unsteady separation.

[1]  Hjh Herman Clercx,et al.  Benchmark computations of the normal and oblique collision of a dipole with a no-slip boundary , 2006 .

[2]  D. Telionis,et al.  Boundary-layer separation in unsteady flow , 1975 .

[3]  S. F. Shen,et al.  The spontaneous generation of the singularity in a separating laminar boundary layer , 1980 .

[4]  A. Obabko Navier–Stokes solutions of unsteady separation induced by a vortex , 2002, Journal of Fluid Mechanics.

[5]  F. Smith,et al.  Vortex-induced boundary-layer separation. Part 1. The unsteady limit problem Re → ∞ , 1991, Journal of Fluid Mechanics.

[6]  J. Walker The boundary layer due to rectilinear vortex , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  Stephen J. Cowley,et al.  Laminar Boundary-layer Theory: A 20th Century Paradox? , 2001 .

[8]  F. Smith,et al.  On sublayer eruption and vortex formation , 1991 .

[9]  G. V. van Heijst,et al.  Dissipation of kinetic energy in two-dimensional bounded flows. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  F. Gargano,et al.  Singularity Formation and Separation Phenomena in Boundary Layer Theory , 2009 .

[11]  K. Cassel A comparison of Navier-Stokes solutions with the theoretical description of unsteady separation , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[13]  Jian‐Guo Liu,et al.  Vorticity Boundary Condition and Related Issues for Finite Difference Schemes , 1996 .

[14]  V. Heijst,et al.  Vorticity dynamics of a dipole colliding with a no-slip wall , 2007 .

[15]  Russel E. Caflisch,et al.  Existence and Singularities for the Prandtl Boundary Layer Equations , 2000 .

[16]  Frank T. Smith,et al.  The onset of instability in unsteady boundary-layer separation , 1996, Journal of Fluid Mechanics.

[17]  F. Smith,et al.  Short-scale break-up in unsteady interactive layers: local development of normal pressure gradients and vortex wind-up , 1998, Journal of Fluid Mechanics.

[18]  R. LeVeque Numerical methods for conservation laws , 1990 .

[19]  Paolo Orlandi,et al.  Vortex dipole rebound from a wall , 1990 .

[20]  W. Marsden I and J , 2012 .

[21]  M. Lombardo,et al.  Singularity tracking for Camassa-Holm and Prandtl's equations , 2006 .

[22]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[23]  F. Gargano,et al.  Singularity formation for Prandtl’s equations , 2009, 1310.6622.

[24]  Frank T. Smith,et al.  Vortex-induced boundary-layer separation. Part 2. Unsteady interacting boundary-layer theory , 1991, Journal of Fluid Mechanics.

[25]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[26]  James D. Walker,et al.  Vortex-Induced Boundary Layer Separation , 1989 .

[27]  A. Obabko,et al.  A Rayleigh instability in a vortex-induced unsteady boundary layer , 2010 .

[28]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[29]  Stephen J. Cowley,et al.  On the Lagrangian description of unsteady boundary-layer separation. Part 1. General theory , 1989, Journal of Fluid Mechanics.

[30]  A. Conlisk,et al.  The effect of interaction on the boundary layer induced by a convected rectilinear vortex , 1989, Journal of Fluid Mechanics.

[31]  T. Doligalski,et al.  The boundary layer induced by a convected two-dimensional vortex , 1984, Journal of Fluid Mechanics.

[32]  Evangelos A. Coutsias,et al.  Fundamental interactions of vortical structures with boundary layers in two-dimensional flows , 1991 .