Using Multiobjective Evolutionary Algorithms to Assess Biological Simulation Models

We introduce an important general Multiobjective Evolutionary Algorithm (MOEA) application - assessment of mechanistic simulation models in biology. These models are often developed to investigate the processes underlying biological phenomena. The proposed model structure must be assessed to reveal if it adequately describes the phenomenon. Objective functions are defined to measure how well the simulations reproduce specific phenomenon features. They may be continuous or binary-valued, e.g. constraints, depending on the quality and quantity of phenomenon data. Assessment requires estimating and exploring the model's Pareto frontier. To illustrate the problem, we assess a model of shoot growth in pine trees using an elitist MOEA based on Nondominated Sorting in Genetic Algorithms. The algorithm uses the partition induced on the parameter space by the binary-valued objectives. Repeating the assessment with tighter constraints revealed model structure improvements required for a more accurate simulation of the biological phenomenon.

[1]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[2]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[3]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[4]  E. D. Ford,et al.  Time lags in the water relations of Sitka spruce , 1983 .

[5]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[6]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[7]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[8]  E. David Ford,et al.  MULTI-CRITERIA ASSESSMENT OF ECOLOGICAL PROCESS MODELS , 1999 .

[9]  G. Hornberger,et al.  Approach to the preliminary analysis of environmental systems , 1981 .

[10]  J. D. Deans,et al.  Fluctuations of the soil environment and fine root growth in a young Sitka spruce plantation , 1979, Plant and Soil.

[11]  Qiang Shen,et al.  Hard, flexible and dynamic constraint satisfaction , 1999, The Knowledge Engineering Review.

[12]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[13]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 , 2000 .

[14]  D. Whitehead,et al.  A comparison of two methods of estimating transpiration rates from a Sitka spruce plantation , 1985 .

[15]  J. Monteith Evaporation and environment. , 1965, Symposia of the Society for Experimental Biology.

[16]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[17]  Geoffrey T. Parks,et al.  Selective Breeding in a Multiobjective Genetic Algorithm , 1998, PPSN.

[18]  E. David Ford,et al.  Multi-objective evolutionary algorithms for ecological process models , 2005 .

[19]  Xin Yao,et al.  Parallel Problem Solving from Nature PPSN VI , 2000, Lecture Notes in Computer Science.

[20]  Carlos A. Coello Coello,et al.  Guest editorial: special issue on evolutionary multiobjective optimization , 2003, IEEE Trans. Evol. Comput..

[21]  Volker Grimm,et al.  Using pattern-oriented modeling for revealing hidden information: a key for reconciling ecological theory and application , 2003 .

[22]  E. David Ford,et al.  A Model of Competition Incorporating Plasticity through Modular Foliage and Crown Development , 1993 .

[23]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[24]  Simon N. Wood,et al.  Super–sensitivity to structure in biological models , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[26]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[27]  E. David Ford,et al.  The use of multi-criteria assessment in developing a process model , 2006 .

[28]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[29]  Lino A. Costa,et al.  An Adaptive Sharing Elitist Evolution Strategy for Multiobjective Optimization , 2003, Evolutionary Computation.

[30]  E. D. Ford,et al.  AN AUTOMATIC SYSTEM FOR MEASURING SHOOT LENGTH IN SITKA SPRUCE AND OTHER PLANT SPECIES , 1977 .

[31]  E. D. Ford,et al.  Shoot Extension in Picea sitchensis I. Seasonal Variation Within a Forest Canopy , 1987 .

[32]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[33]  Thomas Bäck,et al.  Parallel Problem Solving from Nature — PPSN V , 1998, Lecture Notes in Computer Science.