Supramolecular chemistry of two new bis(1,2,3-triazolyl)pyridine macrocycles: metal complexation, self-assembly and anion binding.

Two new macrocycles containing bis(1,2,3-triazolyl)pyridine groups are reported. One forms nanotubes in the solid state, while the other binds anions and complexes transition metals.

[1]  Nathan D Colley,et al.  Topologically Controlled Syntheses of Unimolecular Oligo[n]catenanes , 2022, ACS central science.

[2]  T. Gunnlaugsson,et al.  Recent advances in the development of the btp motif: A versatile terdentate coordination ligand for applications in supramolecular self-assembly, cation and anion recognition chemistries , 2021, Coordination Chemistry Reviews.

[3]  T. Gunnlaugsson,et al.  Mechanically Interlocked Chiral Self‐Templated [2]Catenanes from 2,6‐Bis(1,2,3‐triazol‐4‐yl)pyridine (btp) Ligands , 2021, Chemistry.

[4]  P. Beer,et al.  From Heteroditopic to Multitopic Receptors for Ion-Pair Recognition: Advances in Receptor Design and Applications. , 2020, ChemPlusChem.

[5]  A. Casnati,et al.  Activation of the Aromatic Core of 3,3′-(Pyridine-2,6-diylbis(1H-1,2,3-triazole-4,1-diyl))bis(propan-1-ol)—Effects on Extraction Performance, Stability Constants, and Basicity , 2019, Inorganic chemistry.

[6]  S. Cockroft,et al.  The Energetic Significance of Metallophilic Interactions. , 2019, Angewandte Chemie.

[7]  Robin Taylor,et al.  A Million Crystal Structures: The Whole Is Greater than the Sum of Its Parts. , 2019, Chemical reviews.

[8]  Shi‐yu Wu,et al.  Fine-Tuned Visible and Near-Infrared Luminescence on Self-Assembled Lanthanide-Organic Tetrahedral Cages with Triazole-Based Chelates. , 2019, Inorganic chemistry.

[9]  Philip A. Gale,et al.  Tetraurea Macrocycles: Aggregation-Driven Binding of Chloride in Aqueous Solutions , 2019, Chem.

[10]  P. Kruger,et al.  Reversible Transformation between a [PdL2 ]2+ "Figure-of-Eight" Complex and a [Pd2 L2 ]4+ Dimer: Switching On and Off Self-Recognition. , 2019, Chemistry.

[11]  C. Bannwarth,et al.  GFN2-xTB-An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. , 2018, Journal of chemical theory and computation.

[12]  R. Hoogenboom,et al.  Metal Ion Selective Self-Assembly of a Ligand Functionalized Polymer into [1+1] Macrocyclic and Supramolecular Polymer Structures via Metal-Ligand Coordination. , 2019, Macromolecular rapid communications.

[13]  Wei Zhao,et al.  Sequence-Controlled Stimuli-Responsive Single-Double Helix Conversion between 1:1 and 2:2 Chloride-Foldamer Complexes. , 2018, Journal of the American Chemical Society.

[14]  Stuart J. Rowan,et al.  Poly[n]catenanes: Synthesis of molecular interlocked chains , 2017, Science.

[15]  J. Crowley,et al.  Self-Assembly with 2,6-Bis(1-(pyridin-4-ylmethyl)-1H-1,2,3-triazol-4-yl)pyridine: Silver(I) and Iron(II) Complexes , 2017, Molecules.

[16]  Vivian Wing-Wah Yam,et al.  Supramolecular Self-Assembly and Dual-Switch Vapochromic, Vapoluminescent, and Resistive Memory Behaviors of Amphiphilic Platinum(II) Complexes. , 2017, Journal of the American Chemical Society.

[17]  Jean-Pierre Sauvage,et al.  From Chemical Topology to Molecular Machines (Nobel Lecture). , 2017, Angewandte Chemie.

[18]  J. Fraser Stoddart,et al.  Mechanically Interlocked Molecules (MIMs)-Molecular Shuttles, Switches, and Machines (Nobel Lecture). , 2017, Angewandte Chemie.

[19]  L. Guénée,et al.  Stereoselective and Enantiospecific Mono- and Bis-C-H Azidation of Tröger Bases: Insight on Bridgehead Iminium Intermediates and Application to Anion-Binding Catalysis. , 2017, Chemistry.

[20]  T. Gunnlaugsson,et al.  Formation of Self-Templated 2,6-Bis(1,2,3-triazol-4-yl)pyridine [2]Catenanes by Triazolyl Hydrogen Bonding: Selective Anion Hosts for Phosphate. , 2016, Angewandte Chemie.

[21]  Yi Pan,et al.  Two new triazolophanes: synthesis, structures, self-assembling, and anion complexation properties , 2015 .

[22]  E. W. Meijer,et al.  Ring-Opening Metathesis Polymerization of a Diolefinic [2]-Catenane–Copper(I) Complex: An Easy Route to Polycatenanes , 2015 .

[23]  M. Más‐Montoya,et al.  Complexation and sensing of dicarboxylate anions and dicarboxylic acids , 2015 .

[24]  Pierre Kennepohl,et al.  Evidence for Halogen Bond Covalency in Acyclic and Interlocked Halogen-Bonding Receptor Anion Recognition , 2014, Journal of the American Chemical Society.

[25]  P. Beer,et al.  Halogen bonding in water results in enhanced anion recognition in acyclic and rotaxane hosts. , 2014, Nature chemistry.

[26]  C. Barner‐Kowollik,et al.  Consecutive modular ligation as an access route to palladium containing polymers , 2013 .

[27]  Santiago Alvarez,et al.  A cartography of the van der Waals territories. , 2013, Dalton transactions.

[28]  C. Mirkin,et al.  Selective isolation of gold facilitated by second-sphere coordination with α-cyclodextrin , 2013, Nature Communications.

[29]  P. Beer,et al.  A catenane host system containing integrated triazole C-H hydrogen bond donors for anion recognition. , 2012, Chemical communications.

[30]  Guangning Hong,et al.  Multi-responsive self-healing metallo-supramolecular gels based on “click” ligand , 2012 .

[31]  P. Beer,et al.  Heteroditopic receptors for ion-pair recognition. , 2012, Angewandte Chemie.

[32]  Yibao Li,et al.  Strong aggregation and directional assembly of aromatic oligoamide macrocycles. , 2011, Journal of the American Chemical Society.

[33]  Peter D. Frischmann,et al.  Columnar organization of head-to-tail self-assembled Pt4 rings. , 2010, Journal of the American Chemical Society.

[34]  P. Beer,et al.  A [2]catenane containing an upper-rim functionalized calix[4]arene for anion recognition , 2009 .

[35]  J. F. Stoddart,et al.  The chemistry of the mechanical bond. , 2009, Chemical Society reviews.

[36]  A. Flood,et al.  Dipole-promoted and size-dependent cooperativity between pyridyl-containing triazolophanes and halides leads to persistent sandwich complexes with iodide. , 2008, Journal of the American Chemical Society.

[37]  M. Ostermeier,et al.  Multifunctional "clickates" as versatile extended heteroaromatic building blocks: efficient synthesis via click chemistry, conformational preferences, and metal coordination. , 2007, Chemistry.

[38]  John C Huffman,et al.  Can terdentate 2,6-bis(1,2,3-triazol-4-yl)pyridines form stable coordination compounds? , 2007, Chemical communications.

[39]  T. Hanks,et al.  Synthesis and Polymerization Behavior of Tridentate Diacetylene Hosts , 2006 .

[40]  S. Höger,et al.  Cationic shape-persistent macrocycles: the unexpected formation of a nano-size supramolecular dimer. , 2006, Journal of the American Chemical Society.

[41]  P. Beer,et al.  Anion-templated assembly of pseudorotaxanes: importance of anion template, strength of ion-pair thread association, and macrocycle ring size. , 2005, Journal of the American Chemical Society.

[42]  K. Sharpless,et al.  Polytriazoles as copper(I)-stabilizing ligands in catalysis. , 2004, Organic letters.

[43]  Kazuhiko Miyamoto,et al.  Double Elimination Protocol for Convenient Synthesis of Dihalodiphenylacetylenes: Versatile Building Blocks for Tailor‐Made Phenylene‐Ethynylenes , 2004 .

[44]  K. Nakamura,et al.  Synthesis and self-aggregation of cyclic alkynes containing helicene. , 2001, Organic letters.

[45]  Linda S. Shimizu,et al.  Self-assembly of a bis-urea macrocycle into a columnar nanotube. , 2001, Chemical communications.

[46]  J. F. Stoddart,et al.  Oligocatenanes Made to Order1 , 1998 .

[47]  K. N. Rose Self-assembly of carcerand-like dimers of calix[4]resorcinarene facilitated by hydrogen bonded solvent bridges , 1998 .

[48]  K. Murayama Resorcin[4]arene dimer linked by eight water molecules and incorporating a tetraethylammonium ion: guest-driven capsule formation via cation–π interactions , 1998 .

[49]  J. Atwood,et al.  A chiral spherical molecular assembly held together by 60 hydrogen bonds , 1997, Nature.

[50]  R. Crabtree,et al.  A READILY AVAILABLE NON-PREORGANIZED NEUTRAL ACYCLIC HALIDE RECEPTOR WITH AN UNUSUAL NONPLANAR BINDING CONFORMATION , 1997 .

[51]  Juan R. Granja,et al.  Self-assembling organic nanotubes based on a cyclic peptide architecture , 1993, Nature.