Electromagnetic wave scattering from conducting self-affine surfaces: an analytic and numerical study.

We derive an analytical expression for the scattering of an s-polarized plane wave from a perfectly conducting self-affine one-dimensional surface in the framework of the Kirchhoff approximation. We show that most of the results can be recovered by means of a scaling analysis. We identify the typical slope taken over one wavelength as the relevant parameter controlling the scattering process. We compare our predictions with direct numerical simulations performed on surfaces of varying roughness parameters and confirm the broad range of applicability of our description up to very large roughness. Finally we verify that a nonzero electrical resistivity, provided that it is small, does not invalidate our results.

[1]  E. Thorsos,et al.  An investigation of the small slope approximation for scattering from rough surfaces. Part I. Theory , 1995 .

[2]  I. Simonsen,et al.  Determination of the Hurst exponent by use of wavelet transforms , 1997, cond-mat/9707153.

[3]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[4]  J. Ogilvy,et al.  Theory of Wave Scattering From Random Rough Surfaces , 1991 .

[5]  Roux,et al.  Reliability of self-affine measurements. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Elisabeth Bouchaud,et al.  Scaling properties of cracks , 1997 .

[7]  M. Nieto-Vesperinas,et al.  Monte Carlo simulations for scattering of electromagnetic waves from perfectly conductive random rough surfaces. , 1987, Optics letters.

[8]  Arthur R. McGurn,et al.  Enhanced backscattering of light from a random grating , 1990 .

[9]  Darrell R. Jackson,et al.  Studies of scattering theory using numerical methods , 1991 .

[10]  DIFFRACTION FROM NON-GAUSSIAN ROUGH SURFACES , 1997 .

[11]  Franck Plouraboué,et al.  Multi-scale roughness transfer in cold metal rolling , 1999 .

[12]  J. García-Ramos,et al.  Calculations of the direct electromagnetic enhancement in surface enhanced Raman scattering on random self-affine fractal metal surfaces , 1998 .

[13]  Siak Piang Lim,et al.  Wave Scattering from Fractal Surfaces , 1995 .

[14]  K. A. O'Donnell,et al.  Observation of depolarization and backscattering enhancement in light scattering from gaussian random surfaces , 1987 .

[15]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[16]  Mean-field theory of light scattering by one-dimensional rough surfaces , 1998 .

[17]  Dwight L. Jaggard,et al.  FRACTAL SURFACE SCATTERING : A GENERALIZED RAYLEIGH SOLUTION , 1990 .

[18]  J. Greffet,et al.  Propagation and localization of a surface plasmon polariton on a finite grating , 1996 .

[19]  Henry Leung,et al.  The use of fractals for modeling EM waves scattering from rough sea surface , 1996, IEEE Trans. Geosci. Remote. Sens..

[20]  L. W.,et al.  The Theory of Sound , 1898, Nature.

[21]  Patrick E. McSharry,et al.  Wave scattering by a two‐dimensional band‐limited fractal surface based on a perturbation of the Green’s function , 1995 .

[22]  K. O'Donnell,et al.  Observations of backscattering enhancement from polaritons on a rough metal surface , 1995 .

[23]  M. Shepard,et al.  Self‐affine (fractal) topography: Surface parameterization and radar scattering , 1995 .

[24]  Toh-Ming Lu,et al.  Power law behavior in diffraction from fractal surfaces , 1998 .

[25]  Sánchez-Gil Coupling, resonance transmission, and tunneling of surface-plasmon polaritons through metallic gratings of finite length. , 1996, Physical review. B, Condensed matter.

[26]  A. Maradudin,et al.  Backscattering effects in the elastic scattering of p-polarized light from a large-amplitude random metallic grating. , 1989, Optics letters.

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[29]  Richard L. Weaver,et al.  Waves in random media , 1984 .

[30]  Luciano Pietronero,et al.  FRACTALS IN PHYSICS , 1990 .

[31]  Kitson,et al.  Full Photonic Band Gap for Surface Modes in the Visible. , 1996, Physical review letters.

[32]  Paul Meakin,et al.  Fractals, scaling, and growth far from equilibrium , 1998 .

[33]  Roux,et al.  Wave scattering from self-affine surfaces , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  William H. Press,et al.  Numerical recipes , 1990 .

[35]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[36]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[37]  D. Jackson,et al.  The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum , 1988 .

[38]  Numerical studies of the small slope approximation for rough surface scattering using a Pierson–Moskowitz spectrum , 1995 .

[39]  Colin J. R. Sheppard,et al.  Scattering by fractal surfaces with an outer scale , 1996 .

[40]  Yang,et al.  Diffraction from surface growth fronts. , 1993, Physical review. B, Condensed matter.

[41]  G. D. Parfitt,et al.  Surface Science , 1965, Nature.

[42]  P. Beckmann,et al.  The scattering of electromagnetic waves from rough surfaces , 1963 .

[43]  Far-field intensity of electromagnetic waves scattered from random, self-affine fractal metal surfaces , 1997 .

[44]  Characterization of random rough surfaces by in-plane light scattering , 1998 .