Terahertz Spin Currents and Inverse Spin Hall Effect in Thin-Film Heterostructures Containing Complex Magnetic Compounds

Terahertz emission spectroscopy (TES) of ultrathin multilayers of magnetic and heavy metals has recently attracted much interest. This method not only provides fundamental insights into photoinduced spin transport and spin–orbit interaction at highest frequencies, but has also paved the way for applications such as efficient and ultrabroadband emitters of terahertz (THz) electromagnetic radiation. So far, predominantly standard ferromagnetic materials have been exploited. Here, by introducing a suitable figure of merit, we systematically compare the strength of THz emission from X/Pt bilayers with X being a complex ferro-, ferri- and antiferromagnetic metal, that is, dysprosium cobalt (DyCo5), gadolinium iron (Gd24Fe76), magnetite (Fe3O4) and iron rhodium (FeRh). We find that the performance in terms of spin-current generation not only depends on the spin polarization of the magnet’s conduction electrons, but also on the specific interface conditions, thereby suggesting TES to be a highly interface-sensitive technique. In general, our results are relevant for all applications that rely on the optical generation of ultrafast spin currents in spintronic metallic multilayers.

[1]  Yang Liu,et al.  High‐Performance THz Emitters Based on Ferromagnetic/Nonmagnetic Heterostructures , 2016, Advanced materials.

[2]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[3]  H. Dürr,et al.  Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins , 2011, Nature.

[4]  T. Suzuki,et al.  Magnetic Properties of Single-Crystalline FeRh Alloy Thin Films , 2008, IEEE Transactions on Magnetics.

[5]  F. Sirotti,et al.  Stable room-temperature ferromagnetic phase at the FeRh(100) surface , 2015, Scientific Reports.

[6]  H. Zabel,et al.  Perpendicular exchange bias in ferrimagnetic spin valves , 2012, Nature Communications.

[7]  B. Koopmans,et al.  Correlation between magnetism and spin-dependent transport in CoFeB alloys. , 2008, Physical review letters.

[8]  J. Kouvel,et al.  Anomalous Magnetic Moments and Transformations in the Ordered Alloy FeRh , 1962 .

[9]  Mannan Ali,et al.  Ferromagnetism at the interfaces of antiferromagnetic FeRh epilayers , 2010 .

[10]  M. Ziese,et al.  Magnetoresistance of magnetite , 2000 .

[11]  G. Jakob,et al.  Efficient metallic spintronic emitters of ultrabroadband terahertz radiation , 2016 .

[12]  T. Jungwirth,et al.  Investigation of magneto-structural phase transition in FeRh by reflectivity and transmittance measurements in visible and near-infrared spectral region , 2016 .

[13]  E. Verwey,et al.  Electronic conductivity and transition point of magnetite (“Fe3O4”) , 1941 .

[14]  K. Sokolowski-Tinten,et al.  Structural dynamics in FeRh during a laser-induced metamagnetic phase transition , 2012 .

[15]  M. Cinchetti,et al.  Engineered materials for all-optical helicity-dependent magnetic switching. , 2014, Nature materials.

[16]  J. Güdde,et al.  Electron and lattice dynamics following optical excitation of metals , 2000 .

[17]  T. Rasing,et al.  All-optical magnetic recording with circularly polarized light. , 2007, Physical review letters.

[18]  Jairo Sinova,et al.  Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. , 2005 .

[19]  M. Itoh,et al.  Barkhausen-like antiferromagnetic to ferromagnetic phase transition driven by spin polarized current , 2015 .

[20]  F. Freimuth,et al.  Terahertz spin current pulses controlled by magnetic heterostructures. , 2012, Nature nanotechnology.

[21]  H Adachi,et al.  Spin Seebeck insulator. , 2010, Nature Materials.

[22]  Igor V. Shvets,et al.  Anomalous anisotropic magnetoresistance in epitaxial Fe 3 O 4 thin films on MgO(001) , 2008 .

[23]  Fe t 2 g band dispersion and spin polarization in thin films of Fe 3 O 4 (0 0 1)/MgO(0 0 1): Half-metallicity of magnetite revisited , 2013 .

[24]  T. Huisman,et al.  Spin-photo-currents generated by femtosecond laser pulses in a ferrimagnetic gdfeco/pt bilayer , 2017 .

[25]  T. Rasing,et al.  Ultrafast optical manipulation of magnetic order , 2010 .

[26]  A. Loidl,et al.  Terahertz conductivity at the Verwey transition in magnetite , 2005, cond-mat/0503606.

[27]  M. Brandt,et al.  Scaling behavior of the spin pumping effect in ferromagnet-platinum bilayers. , 2010, Physical review letters.

[28]  J. Cezar,et al.  Origin of the giant magnetic moment in epitaxial Fe 3 O 4 thin films , 2010 .

[29]  F. Pan,et al.  Electrochemical control of the phase transition of ultrathin FeRh films , 2016 .

[30]  J. Coutaz,et al.  A reliable method for extraction of material parameters in terahertz time-domain spectroscopy , 1996 .

[31]  F. Pan,et al.  Influence of film composition on the transition temperature of FeRh films , 2016 .

[32]  Akira Yanase,et al.  Band Structure in the High Temperature Phase of Fe3O4 , 1984 .

[33]  S. Hunsche,et al.  Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory , 1999 .

[34]  V. Roddatis,et al.  Femtosecond Spin Current Pulses Generated by the Nonthermal Spin-Dependent Seebeck Effect and Interacting with Ferromagnets in Spin Valves. , 2016, Physical review letters.

[35]  Ronger Zheng,et al.  Powerful and Tunable THz Emitters Based on the Fe/Pt Magnetic Heterostructure , 2016, 1607.02814.

[36]  J. Bigot,et al.  Spin dynamics in CoPt 3 alloy films: A magnetic phase transition in the femtosecond time scale , 1998 .

[37]  G. Jakob,et al.  Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter , 2017, 1703.09970.

[38]  S. Maekawa,et al.  Observation of the spin Seebeck effect , 2008, Nature.

[39]  L. Swartzendruber The Fe−Rh (Iron-Rhodium) system , 1984 .

[40]  P. Freitas,et al.  Femtosecond control of electric currents in metallic ferromagnetic heterostructures. , 2015, Nature nanotechnology.