Stabilizing detached Bridgman melt crystal growth: Model-based nonlinear feedback control

Abstract The dynamics and operability limits of a nonlinear-proportional-integral controller designed to stabilize detached vertical Bridgman crystal growth are studied. The manipulated variable is the pressure difference between upper and lower vapor spaces, and the controlled variable is the gap width at the triple-phase line. The controller consists of a model-based nonlinear component coupled with a standard proportional-integral controller. The nonlinear component is based on a capillary model of shape stability. Perturbations to gap width, pressure difference, wetting angle, and growth angle are studied under both shape stable and shape unstable conditions. The nonlinear-PI controller allows a wider operating range of gain than a standard PI controller used alone, is easier to tune, and eliminates solution multiplicity from closed-loop operation.

[1]  T. Duffar,et al.  Growth of GaSb single crystals by an improved dewetting process , 2001 .

[2]  A. Isidori Nonlinear Control Systems , 1985 .

[3]  Andrew Yeckel,et al.  Effect of accelerated crucible rotation on melt composition in high-pressure vertical Bridgman growth of cadmium zinc telluride , 2000 .

[4]  Yunlong Cui,et al.  Anomalous segregation during electrodynamic gradient freeze growth of cadmium zinc telluride , 2011 .

[5]  J. Derby,et al.  Analysis of interrupted growth strategies for cadmium telluride in an unseeded vertical Bridgman system , 1996 .

[6]  Jeffrey J. Derby,et al.  Modeling the vertical Bridgman growth of cadmium zinc telluride II. Transient analysis of zinc segregation , 1995 .

[7]  S. Brandon,et al.  Basic Principles of Capillarity in Relation to Crystal Growth , 2010 .

[8]  G. Roosen,et al.  DEWETTING AND STRUCTURAL QUALITY OF CdTe:Zn:V GROWN IN SPACE ☆ , 2001 .

[9]  Olf Pätzold,et al.  Detached growth behaviour of 2-in germanium crystals , 2005 .

[10]  D. Hurle Crystal pulling from the melt , 1993 .

[11]  M. Volz,et al.  Detached Bridgman Growth—A Standard Crystal Growth Method with a New Twist , 2009 .

[12]  G. Stephanopoulos,et al.  Dynamics and control of the Czochralski process: I. Modelling and dynamic characterization , 1987 .

[13]  Klaus-Werner Benz,et al.  Dewetted growth and characterisation of high-resistivity CdTe , 2004 .

[14]  George Stephanopoulos,et al.  Chemical Process Control: An Introduction to Theory and Practice , 1983 .

[15]  William H. Press,et al.  Numerical recipes , 1990 .

[16]  Prodromos Daoutidis,et al.  Dynamic output feedback control of nimimum-phase nonlinear processes , 1992 .

[17]  G. Roosen,et al.  Dewetting During the Crystal Growth of (Cd,Zn)Te:In Under Microgravity , 2008, IEEE Transactions on Nuclear Science.

[18]  J. Derby,et al.  On the dynamics of Czochralski crystal growth , 1987 .

[19]  D. Hurle Control of diameter in Czochralski and related crystal growth techniques , 1977 .

[20]  Jeffrey J. Derby,et al.  Transient effects during the horizontal Bridgman growth of cadmium zinc telluride , 1999 .

[21]  Jan Winkler,et al.  Nonlinear model-based control of the Czochralski process I: Motivation, modeling and feedback controller design , 2010 .

[22]  Pierre Dusserre,et al.  Crucible de-wetting during Bridgman growth in microgravity. II. Smooth crucibles , 1997 .

[23]  Prodromos Daoutidis,et al.  Stabilizing detached Bridgman melt crystal growth: Proportional-integral feedback control , 2012 .

[24]  Martin P. Volz,et al.  Detached growth of germanium by directional solidification , 2005 .

[25]  N. Zhang,et al.  Maintaining convex interface shapes during electrodynamic gradient freeze growth of cadmium zinc telluride using a dynamic, bell-curve furnace profile , 2012 .

[26]  G. W. Green,et al.  Automatic control of Czochralski crystal growth , 1972 .

[27]  J. Garandet,et al.  Dewetting application to CdTe single crystal growth on earth , 2004 .

[28]  J. Derby,et al.  Buoyancy and rotation in small-scale vertical Bridgman growth of cadmium zinc telluride using accelerated crucible rotation , 2001 .

[29]  Andrew Yeckel,et al.  Existence, stability, and nonlinear dynamics of detached Bridgman growth states under zero gravity , 2011 .

[30]  Arun Pandy,et al.  Three-dimensional imperfections in a model vertical Bridgman growth system for cadmium zinc telluride , 2004 .

[31]  T. Duffar,et al.  Experimental investigation of dewetting models , 2011 .

[32]  C. Garnier,et al.  Effect of residual gaseous impurities on the dewetting of antimonide melts in fused silica crucibles in the case of bulk crystal growth , 2008 .

[33]  T. Duffar,et al.  Bridgman growth without crucible contact using the dewetting phenomenon , 2000 .

[34]  M. Volz,et al.  Existence and shapes of menisci in detached Bridgman growth , 2011 .