Guided Wave Interaction in Photonic Integrated Circuits — A Hybrid Analytical/Numerical Approach to Coupled Mode Theory

Frequently, optical integrated circuits combine elements (waveguide channels, cavities), the simulation of which is well established through mature numerical eigenproblem solvers. It remains to predict the interaction of these modes. We address this task by a general, “Hybrid” variant (HCMT) of Coupled Mode Theory. Using methods from finite-element numerics, the properties of a circuit are approximated by superpositions of eigen-solutions for its constituents, leading to quantitative, computationally cheap, and easily interpretable models.

[1]  O. Schwelb,et al.  Band-Limited Microresonator Reflectors and Mirror Structures , 2010 .

[2]  M. Maksimovic,et al.  Coupled optical defect microcavities in 1D photonic crystals and quasi-normal modes , 2008, SPIE OPTO.

[3]  M. Maksimović,et al.  Field representation for optical defect resonances in multilayer microcavities using quasi-normal modes , 2008 .

[4]  M. Hammer Hybrid Analytical/Numerical Coupled-Mode Modeling of Guided-Wave Devices , 2006, Journal of Lightwave Technology.

[5]  Manfred Hammer,et al.  Cylindrical integrated optical microresonators: Modeling by 3-D vectorial coupled mode theory , 2005 .

[6]  H. Haus,et al.  Microring resonator channel dropping filters , 1997 .

[7]  J Jaap Molenaar,et al.  Continuum modeling in the physical sciences , 2007, Mathematical modeling and computation.

[8]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[9]  P. Barclay,et al.  Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities , 2003 .

[10]  Benjamin Gallinet,et al.  Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials , 2011, 1105.2503.

[11]  Stefano Selleri,et al.  Modelling leaky photonic wires: A mode solver comparison , 2007 .

[12]  Milan Maksimovic Optical resonances in multilayer structures , 2008 .

[13]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[14]  M. Hammer Chains of coupled square dielectric optical microcavities , 2008 .

[15]  K. Hiremath,et al.  Modeling of circular integrated optical microresonators by 2-D frequency domain coupled mode theory , 2006 .

[16]  Radiatively coupled waveguide polarization splitter simulated by wave-matching-based coupled mode theory , 1999 .

[17]  Yikai Su,et al.  Coupled mode theory analysis of mode-splitting in coupled cavity system. , 2010, Optics express.

[18]  Shun Lien Chuang,et al.  A coupled mode formulation by reciprocity and a variational principle , 1987 .

[19]  R. Stoffer,et al.  Analytic approach to dielectric optical bent slab waveguides , 2005 .

[20]  K. Okamoto Fundamentals of Optical Waveguides , 2000 .

[21]  Charles Vassallo,et al.  Optical Waveguide Concepts , 1991 .

[22]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[23]  C. Vassallo 1993--1995 Optical mode solvers , 1997 .

[24]  Shanhui Fan,et al.  Coupling of modes analysis of resonant channel add-drop filters , 1999 .

[25]  Nikolaos K. Uzunoglu,et al.  Photonic Microresonator Research and Applications , 2010 .

[26]  Shanhui Fan,et al.  THEORETICAL ANALYSIS OF CHANNEL DROP TUNNELING PROCESSES , 1999 .

[27]  Wei-Ping Huang Coupled-mode theory for optical waveguides: an overview , 1994 .

[28]  Shanhui Fan,et al.  Mode-coupling analysis of multipole symmetric resonant add/drop filters , 1999 .

[29]  M. S. Stern Semivectorial polarised H˜ field solutions for dielectric waveguides with arbitrary index profiles , 1988 .

[30]  O. Zhuromskyy,et al.  Unidirectional magnetooptic polarization converters , 1999 .

[31]  S. Boriskina,et al.  Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules. , 2006, Optics letters.

[32]  Manfred Hammer,et al.  Circular Integrated Optical Microresonators: Analytical Methods and Computational Aspects , 2010 .

[33]  M. S. Stern Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles , 1988 .

[34]  M. Hammer HCMT models of optical microring-resonator circuits , 2010 .

[35]  John D. Love,et al.  Evanescent wave coupling of whispering gallery modes of a dielectric cylinder , 1993 .

[36]  O. Zhuromskyy,et al.  Phase-matched rectangular magnetooptic waveguides for applications in integrated optics isolators: numerical assessment , 1998 .

[37]  M. Maksimović,et al.  Coupled optical defect microcavities in one-dimensional photonic crystals and quasi-normal modes , 2008 .

[39]  J. Evers,et al.  Pathway interference in a loop array of three coupled microresonators , 2011, 1102.1372.

[40]  Jiří Čtyroký,et al.  Ring microresonator as a photonic structure with complex eigenfrequency , 2004 .

[41]  Oskar Painter,et al.  Efficient input and output fiber coupling to a photonic crystal waveguide. , 2004, Optics letters.

[42]  L. Zschiedrich Transparent boundary conditions for Maxwell's equations: Numerical concepts beyond the PML method , 2009 .

[43]  G. R. Hadley,et al.  Optical Waveguide Theory and Numerical Modelling , 2004 .

[44]  Chris G. H. Roeloffzen,et al.  Microresonators as building blocks for VLSI Photonics , 2004 .

[45]  Michael Watts,et al.  Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters. , 2006, Optics express.

[46]  A. Yariv,et al.  Wavelength-selective reflector based on a circular array of coupled microring resonators , 2004, IEEE Photonics Technology Letters.

[47]  Reinhard März,et al.  Integrated Optics: Design and Modeling , 1995 .

[48]  K. Hiremath,et al.  Interaction of whispering gallery modes in integrated optical micro-ring or -disk circuits: Hybrid CMT model , 2013 .

[49]  A. Tünnermann,et al.  Observation of optical coupling in microdisk resonators , 2009 .

[50]  R. Stoffer,et al.  Integrated optical cross strip polarizer concept , 2001 .