Fine-mapping identifies two additional susceptibility 9q31.2.

breast cancer loci at Abstract We recently identi fi ed a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at Here, we report a fi ne-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88 – 0.92]; P -value = 1.58 × 10 − 25 ). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans ∼ 14.5 kb. We identi fi ed two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08 – 1.17]; P -value = 7.89 × 10 − 09 ) and rs13294895 (OR = 1.09 [1.06 – 1.12]; P -value= 2.97 × 10 − 11 ). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06 – 1.18]; P -value= 2.77× 10 − 05 ). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone-dependent breast cancer, including ER- α , FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-speci fi c effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis.

S. Cross | A. Ashworth | A. Børresen-Dale | D. Noh | C. Vachon | Jingmei Li | K. Czene | P. Hall | K. Humphreys | D. V. Berg | S. Chanock | M. García-Closas | G. Giles | K. Muir | B. Henderson | C. Haiman | A. Lophatananon | A. Cox | D. Easton | A. Hollestelle | Chen-Yang Shen | P. Pharoah | J. Peto | D. Stram | F. Schumacher | Daniel Vincent | V. Kristensen | J. Long | X. Shu | W. Zheng | Yuxue Gao | L. Signorello | W. Blot | A. Dunning | C. Healey | S. Sangrajrang | V. Gaborieau | O. Fletcher | J. Lissowska | D. Kang | Jianjun Liu | P. Devilee | R. Milne | M. Shah | S. Stewart-Brown | K. Michailidou | J. Dennis | M. Bolla | I. D. S. Silva | A. Meindl | R. Schmutzler | F. Bacot | D. Tessier | C. Luccarini | G. Pita | M. Alonso | M. Reed | I. Andrulis | J. Knight | G. Glendon | M. Hooning | A. Swerdlow | Michael Jones | M. Goldberg | F. Labrèche | M. Dumont | R. Winqvist | K. Pylkäs | A. Jukkola-Vuorinen | M. Grip | C. Seynaeve | A. Jakubowska | J. Lubiński | K. Durda | S. Slager | A. Toland | H. Iwata | A. Wu | C. Tseng | H. Cai | S. Teo | C. Yip | M. Hartman | H. Miao | W. Lim | P. Siriwanarangsan | J. Mckay | Q. Cai | M. Shrubsole | J. Simard | H. Darabi | M. Eriksson | M. Schoemaker | S. Nord | S. Lindstrom | Katarzyna Jaworska-Bieniek | D. Yannoukakos | N. Álvarez | D. Herrero | S. Tchatchou | M. Hou | M. Kriege | C. J. Asperen | Jyh‐cherng Yu | M. Ikram | P. Brennan | D. Klevebring | R. Tollenaar | Ji-Yeob Choi | P. Kang | C. Olswold | B. Perkins | J. Ishiguro | S. C. Lee | G. G. Alnæs | Catriona L. McLean | Sandra | AnnaGonzález-Neira | L. LeMarchand | H. Ito | Sue-Kyung Park | W. Lu | D. J. Hunter | C. V. Deurzen | Jonine Figueroa | Deming-Halverson | KeitaroMatsuo | Caroline Bayes | ShahanaAhmed | MelMaranian | Katarzyna Jaworska–Bieniek | Catriona McLean | Michael P. Jones | P. Hall | Pornthep Siriwanarangsan | Hatef Darabi | Mervi Grip | H. Cai | Silje Nord | B. Henderson | Daniel Klevebring | Curtis L. Olswold | A. Wu | W. Lim | Wei Lu | Yu-Tang Gao

[1]  B. Stranger,et al.  Expression QTL-based analyses reveal candidate causal genes and loci across five tumor types. , 2014, Human molecular genetics.

[2]  Julian Peto,et al.  Genetic Predisposition to In Situ and Invasive Lobular Carcinoma of the Breast , 2014, PLoS genetics.

[3]  Wei Lu,et al.  Fine-scale mapping of the FGFR2 breast cancer risk locus: putative functional variants differentially bind FOXA1 and E2F1. , 2013, American journal of human genetics.

[4]  A. Dunning,et al.  Beyond GWASs: illuminating the dark road from association to function. , 2013, American journal of human genetics.

[5]  Wei Lu,et al.  Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers. , 2013, American journal of human genetics.

[6]  Jaana M. Hartikainen,et al.  Large-scale genotyping identifies 41 new loci associated with breast cancer risk , 2013, Nature Genetics.

[7]  P. Pharoah,et al.  Public health implications from COGS and potential for risk stratification and screening , 2013, Nature Genetics.

[8]  Wei Lu,et al.  Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer , 2013, Nature Genetics.

[9]  Patrick Neven,et al.  Genome-wide association studies identify four ER negative–specific breast cancer risk loci , 2013, Nature Genetics.

[10]  Mark Gerstein,et al.  A comprehensive nuclear receptor network for breast cancer cells. , 2013, Cell reports.

[11]  A. McKenna,et al.  Integrative eQTL-Based Analyses Reveal the Biology of Breast Cancer Risk Loci , 2013, Cell.

[12]  V. Theodorou,et al.  GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility , 2013, Genome research.

[13]  Shankar Balasubramanian,et al.  Genome-wide mapping of FOXM1 binding reveals co-binding with estrogen receptor alpha in breast cancer cells , 2013, Genome Biology.

[14]  Jane E. Carpenter,et al.  A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11. , 2012, Human molecular genetics.

[15]  Zhenqing Ye,et al.  Cell type-specific binding patterns reveal that TCF7L2 can be tethered to the genome by association with GATA3 , 2012, Genome Biology.

[16]  Eurie L. Hong,et al.  Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.

[17]  Swneke D. Bailey,et al.  Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression , 2012, Nature Genetics.

[18]  S. Cross,et al.  9q31.2-rs865686 as a Susceptibility Locus for Estrogen Receptor-Positive Breast Cancer: Evidence from the Breast Cancer Association Consortium , 2012, Cancer Epidemiology, Biomarkers & Prevention.

[19]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[20]  Michael Jones,et al.  Genome-wide association analysis identifies three new breast cancer susceptibility loci , 2012, Nature Genetics.

[21]  Jane E. Carpenter,et al.  A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer , 2011, Nature Genetics.

[22]  Patrick Neven,et al.  Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. , 2011, Human molecular genetics.

[23]  Michael Jones,et al.  Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study. , 2011, Journal of the National Cancer Institute.

[24]  Timothy J. Durham,et al.  "Systematic" , 1966, Comput. J..

[25]  C. Mathers,et al.  Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 , 2010, International journal of cancer.

[26]  Manolis Kellis,et al.  Discovery and characterization of chromatin states for systematic annotation of the human genome , 2010, Nature Biotechnology.

[27]  Montserrat Garcia-Closas,et al.  Genetic susceptibility to breast cancer , 2010, Molecular oncology.

[28]  Deborah Hughes,et al.  Genome-wide association study identifies five new breast cancer susceptibility loci , 2010, Nature Genetics.

[29]  Eric S. Lander,et al.  Hi-C: A Method to Study the Three-dimensional Architecture of Genomes. , 2010, Journal of visualized experiments : JoVE.

[30]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[31]  W. Willett,et al.  A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1) , 2009, Nature Genetics.

[32]  J. Haines,et al.  Genome-wide association study identifies a novel breast cancer susceptibility locus at 6q25.1 , 2009, Nature Genetics.

[33]  A. Sigurdsson,et al.  Common variants on chromosome 5p12 confer susceptibility to estrogen receptor–positive breast cancer , 2008, Nature Genetics.

[34]  L. Shulman,et al.  Genome-wide association study identifies novel breast cancer susceptibility loci , 2008 .

[35]  D. Gudbjartsson,et al.  Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor–positive breast cancer , 2007, Nature Genetics.

[36]  P. Donnelly,et al.  Replicating genotype–phenotype associations , 2007, Nature.

[37]  S. Seal,et al.  PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene , 2007, Nature Genetics.

[38]  J. Eeckhoute,et al.  Positive cross-regulatory loop ties GATA-3 to estrogen receptor alpha expression in breast cancer. , 2007, Cancer research.

[39]  Zena Werb,et al.  GATA-3 Maintains the Differentiation of the Luminal Cell Fate in the Mammary Gland , 2006, Cell.

[40]  Nazneen Rahman,et al.  ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles , 2006, Nature Genetics.

[41]  A. Miele,et al.  Mapping Chromatin Interactions by Chromosome Conformation Capture , 2006, Current protocols in molecular biology.

[42]  R. Bernards,et al.  The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene , 2005, Nature Cell Biology.

[43]  Clifford A. Meyer,et al.  Chromosome-Wide Mapping of Estrogen Receptor Binding Reveals Long-Range Regulation Requiring the Forkhead Protein FoxA1 , 2005, Cell.

[44]  Douglas F. Easton,et al.  Polygenic susceptibility to breast cancer and implications for prevention , 2002, Nature Genetics.

[45]  The Polish Breast Cancer Consortium Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations , 2002 .

[46]  J. Ruppert,et al.  Increase of GKLF messenger RNA and protein expression during progression of breast cancer. , 2000, Cancer research.