Analyse et mise en oeuvre des schémas numériques pour la physique des plasmas ionosphériques et de tokamaks
暂无分享,去创建一个
[1] S. Basu,et al. Magnetic‐flux‐tube‐integrated evolution of equatorial ionospheric plasma bubbles , 1998 .
[2] Eric Gauthier,et al. Edge ion-to-electron temperature ratio in the Tore Supra tokamak , 2008 .
[3] Ph. Ghendrih,et al. Measurements of scrape-off layer ion-to-electron temperature ratio in Tore Supra ohmic plasmas , 2009 .
[4] Christophe Besse,et al. Instability of the Ionospheric Plasma: Modeling and Analysis , 2005, SIAM J. Appl. Math..
[5] Christophe Besse,et al. Numerical simulations of the ionospheric striation model in a non-uniform magnetic field , 2007, Comput. Phys. Commun..
[6] X. Wei,et al. Three dimensional rigorous model for optical scattering problems , 2006 .
[7] Alain J. Brizard,et al. Foundations of Nonlinear Gyrokinetic Theory , 2007 .
[8] R. Sudan,et al. A nonlocal linear theory of the gradient drift instability in the equatorial electrojet , 1989 .
[9] Nicholas J. Higham,et al. A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra , 2000, SIAM J. Matrix Anal. Appl..
[10] J. Fedder,et al. Simulation study of mid‐latitude ionosphere fluctuations observed at Millstone Hill , 2003 .
[11] Livia Isoardi. Modelisation du transport dans le plasma de bord d'un tokamak , 2010 .
[12] Olaf Schenk,et al. Solving unsymmetric sparse systems of linear equations with PARDISO , 2002, Future Gener. Comput. Syst..
[13] J. Huba. NRL: Plasma Formulary , 2004 .
[14] Shi Jin,et al. A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..
[15] Fabrice Deluzet,et al. An Asymptotic Preserving Scheme for Strongly Anisotropic Elliptic Problems , 2009, Multiscale Model. Simul..
[16] Chi-Wang Shu. Total-variation-diminishing time discretizations , 1988 .
[17] Olaf Schenk,et al. Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization , 2007, Comput. Optim. Appl..
[18] Corrado Ronchi,et al. Numerical simulations of large‐scale plasma turbulence in the daytime equatorial electrojet , 1991 .
[19] Sidney L. Ossakow,et al. Nonlinear equatorial spread F: The effect of neutral winds and background Pedersen conductivity , 1982 .
[20] W. J. Burke,et al. Equatorial bubbles updrafting at supersonic speeds , 1992 .
[21] C. Ronchi,et al. Effect of short‐scale turbulence on kilometer wavelength irregularities in the equatorial electrojet , 1990 .
[22] Peter Benner,et al. KRYLOV SUBSPACE ITERATION , 2005 .
[23] Sidney L. Ossakow,et al. Three‐dimensional nonlinear evolution of equatorial ionospheric spread‐F bubbles , 2003 .
[24] B. Fejer,et al. Evolution of equatorial ionospheric bubbles during a large auroral electrojet index increase in the recovery phase of a magnetic storm , 2006 .
[25] M. Kocan,et al. On the reliability of scrape-off layer ion temperature measurements by retarding field analyzers. , 2008, The Review of scientific instruments.
[26] Elisabeth Blanc,et al. Kilometric irregularities in the E and F regions of the daytime equatorial ionosphere observed by a high resolution HF radar , 1996 .
[27] Christophe Grimault. Caracterisation des canaux de propagation satellite-terre shf et ehf en presence de plasma post-nucleaire , 1995 .
[28] Patrick Tamain. Etude des flux de matière dans le plasma de bord des tokamaks : alimentation, transport et turbulence , 2007 .
[29] Bodo W. Reinisch,et al. International Reference Ionosphere 2000 , 2001 .
[30] W. Baker,et al. ELECTRIC CURRENTS IN THE IONOSPHERE , 2007 .
[31] Glenn Joyce,et al. Sami2 is Another Model of the Ionosphere (SAMI2): A new low-latitude ionosphere model , 2000 .
[32] J. Delcroix. Physique des plasmas , 1963 .
[33] A. Harten. High Resolution Schemes for Hyperbolic Conservation Laws , 2017 .
[34] Norikazu Saito. An interpretation of the Scharfetter-Gummel finite difference scheme , 2007 .
[35] S. L. Ossakow,et al. Morphological studies of rising equatorial Spread F bubbles. Interim report , 1977 .
[36] Charles E. Seyler,et al. A nonlocal theory of the gradient-drift instability in the ionospheric E-region plasma at mid-latitudes , 2004 .
[37] D. T. Farley,et al. GENERATION OF SMALL-SCALE IRREGULARITIES IN THE EQUATORIAL ELECTROJET. , 1973 .
[38] Xavier Vallières. Les échelles de la turbulence dans l'ionosphère des hautes latitudes et leurs signatures sur les échos des radars HF du réseau SuperDARN , 2002 .
[39] P. Degond,et al. A MODEL HIERARCHY FOR IONOSPHERIC PLASMA MODELING , 2004 .
[40] N. A. Krall,et al. Principles of Plasma Physics , 1973 .
[41] Virginie Grandgirard,et al. TOKAM-3D: A 3D fluid code for transport and turbulence in the edge plasma of Tokamaks , 2010, J. Comput. Phys..
[42] Takuya Tsuchiya,et al. Yamamoto's principle and its applications to precise finite element error analysis , 2003 .
[43] Guido Ciraolo,et al. 2D modelling of electron and ion temperature in the plasma edge and SOL , 2011 .