Two-electron atoms under spatially compressed Debye plasma

Rayleigh–Ritz variational method has been employed to estimate precise energy-eigenvalues of spherically compressed two-electron atoms ( Z=1−10) embedded in Debye plasma with a view to modelling atom under dense plasma environment. The trial wave function is expanded in terms of explicitly correlated Hylleraas-type basis set satisfying Dirichlet's boundary condition. The combined effect of decrease in the size of spatial confinement domain and increase in Debye screening parameter pushes the system towards gradual destabilization and subsequent ionization or complete fragmentation of the system. Present results are in reasonable agreement with other results existing in literature. Within finite domain, the thermodynamic pressure experienced by the ions due to the plasma electrons is also estimated.

[1]  You-chang Yang,et al.  The hydrogen atom confined in both Debye screening potential and impenetrable spherical box , 2013 .

[2]  B. Talin,et al.  Competing effects of collisional ionization and radiative cooling in inertially confined plasmas , 1998 .

[3]  S. Manson,et al.  A unique situation for an endohedral metallofullerene , 1999 .

[4]  J. Wark,et al.  Density functional theory calculations of continuum lowering in strongly coupled plasmas , 2014, Nature Communications.

[5]  V. Nautiyal,et al.  Photoexcitation and ionization of hydrogen atom confined in Debye environment , 2015 .

[6]  H. J. Lee,et al.  Investigation of femtosecond collisional ionization rates in a solid-density aluminium plasma , 2015, Nature Communications.

[7]  E. A. Carrillo-Delgado,et al.  Continuum electronic bound states in rectangular quantum wells and barriers , 2009 .

[8]  V. I. Pupyshev,et al.  Confined two-electron systems: excited singlet and triplet S states , 2014, Theoretical Chemistry Accounts.

[9]  A. Rodríguez-Contreras,et al.  Compression effects in helium-like atoms (Z=1,…,5) constrained by hard spherical walls , 2008 .

[10]  V. Prasad,et al.  Photoexcitation and ionization of a hydrogen atom confined by a combined effect of a spherical box and Debye plasma , 2015 .

[11]  J. Itatani,et al.  Pressure Ionization and Line Merging in Strongly Coupled Plasmas Produced by 100-fs Laser Pulses , 1998 .

[12]  B. Fricke,et al.  Hyperpolarizability of hydrogen atom under spherically confined Debye plasma , 2011 .

[13]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[14]  S. Hansen,et al.  Partial ionization in dense plasmas: comparisons among average-atom density functional models. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  John C. Slater,et al.  Wave Functions in a Periodic Potential , 1937 .

[16]  Perrot,et al.  Level shifts, continuum lowering, and the mobility edge in dense plasmas. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[17]  S. Bhattacharyya,et al.  Nonrelativistic structure calculations of two-electron ions in a strongly coupled plasma environment , 2015, 1503.05715.

[18]  M. Aramaki Low Perturbative Observation of Moderately Coupled Plasma Using Probe Laser Induced Fluorescence , 2014 .

[19]  R Shepherd,et al.  Observations of the effect of ionization-potential depression in hot dense plasma. , 2013, Physical review letters.

[20]  J. Karwowski,et al.  Spherically confined two-electron atoms immersed in Debye plasma , 2005 .

[21]  B. Rozsnyai Relativistic Hartree-Fock-Slater Calculations for Arbitrary Temperature and Matter Density , 1972 .

[22]  K. Witte,et al.  Isochoric Heating of Solid Aluminum by Ultrashort Laser Pulses Focused on a Tamped Target , 1999 .

[23]  S. Ichimaru Strongly coupled plasmas: high-density classical plasmas and degenerate electron liquids , 1982 .

[24]  Crowley Average-atom quantum-statistical cell model for hot plasma in local thermodynamic equilibrium over a wide range of densities. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[25]  Y. K. Ho,et al.  Bound states of helium atom in dense plasmas , 2006 .

[26]  P. Mukherjee,et al.  Precise estimation of the energy levels of two-electron atoms under spherical confinement , 2013 .

[27]  M. Blaha,et al.  Level shifts and inelastic electron scattering in dense plasmas. Memorandum report , 1981 .

[28]  H. J. Lee,et al.  Direct measurements of the ionization potential depression in a dense plasma. , 2012, Physical review letters.

[29]  Geerd H. F. Diercksen,et al.  Variational calculations for the energy levels of confined two-electron atomic systems , 2002 .

[30]  Sonnad,et al.  Purgatorio—a new implementation of the Inferno algorithm , 2005 .

[31]  G. Diercksen,et al.  Energy levels and structural properties of compressed hydrogen atom under Debye screening , 2002 .

[32]  Jianmin Yuan Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  J. Górecki,et al.  Iterative boundary perturbation method for enclosed one-dimensional quantum systems , 1987 .

[34]  D. Saumon,et al.  Pseudoatom molecular dynamics. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  D. Liberman Self-consistent field model for condensed matter , 1979 .

[36]  Continuum lowering – A new perspective , 2013, 1309.1456.

[37]  J. Faist,et al.  Observation of an electronic bound state above a potential well , 1992, Nature.

[38]  Sang-Kil Son,et al.  Effect of screening by external charges on the atomic orbitals and photoinduced processes within the Hartree-Fock-Slater atom , 2012 .

[39]  Chihara Comparison of integral equations for correlations in liquid metallic hydrogen. , 1986, Physical review. A, General physics.

[40]  M. W. C. Dharmawardana A Review of Studies on Strongly‐Coupled Coulomb Systems Since the Rise of DFT and SCCS‐1977 , 2014, 1412.6811.

[41]  Eberhardt,et al.  Modification of the surface electronic structure of Cu(111) by monolayer Ni adsorption and the effects on H2 chemisorption. , 1989, Physical review. B, Condensed matter.

[42]  R. Santra,et al.  Quantum-mechanical calculation of ionization potential lowering in dense plasmas , 2014, 1404.5484.

[43]  S. Bhattacharyya,et al.  2pnp (1,3Pe) states of neutral He and Li+ ions under Debye plasma screening , 2009 .

[44]  Gregory V. Brown,et al.  The first data from the Orion laser; measurements of the spectrum of hot, dense aluminium , 2013 .

[45]  G. Faussurier Superconfiguration accounting approach versus average-atom model in local-thermodynamic-equilibrium highly ionized plasmas. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  J. Pain,et al.  Quantum mechanical model for the study of pressure ionization in the superconfiguration approach , 2006 .

[47]  J. Chalupský,et al.  Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser , 2012, Nature.

[48]  H. Griem Principles of Plasma Spectroscopy , 1997 .

[49]  T. Guillot A COMPARISON OF THE INTERIORS OF JUPITER AND SATURN , 1999, astro-ph/9907402.

[50]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[51]  D. Liberman Inferno: A better model of atoms in dense plasmas , 1982 .

[52]  S. Canuto Solvation Effects on Molecules and Biomolecules , 2008 .