Mitochondria, oxidative metabolism and cell death in stroke.

[1]  H. H. Townsend Necrosis , 1880, The American journal of dental science.

[2]  W D Heiss,et al.  Functional recovery of cortical neurons as related to degree and duration of ischemia , 1983, Annals of neurology.

[3]  K. Kogure,et al.  Mononucleotide Metabolism in the Rat Brain After Transient Ischemia , 1986, Journal of neurochemistry.

[4]  I. Silver,et al.  Intracellular and Extracellular Changes of [ Ca 2 + ] in Hypoxia and Ischemia in Rat Brain In Vivo , 1990 .

[5]  I A Silver,et al.  Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo , 1990, The Journal of general physiology.

[6]  F. Welsh,et al.  NADH Fluorescence and Regional Energy Metabolites during Focal Ischemia and Reperfusion of Rat Brain , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[7]  C. Epstein,et al.  Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[8]  B. Siesjö,et al.  Penumbral Tissues Salvaged by Reperfusion Following Middle Cerebral Artery Occlusion in Rats , 1992, Stroke.

[9]  B. Siesjö,et al.  Focal and Perifocal Changes in Tissue Energy State during Middle Cerebral Artery Occlusion in Normo- and Hyperglycemic Rats , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[10]  Y. Shiga,et al.  Cyclosporin A protects against ischemia-reperfusion injury in the brain , 1992, Brain Research.

[11]  C. Petito,et al.  Brain glutamine synthetase increases following cerebral ischemia in the rat , 1992, Brain Research.

[12]  M Chopp,et al.  Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. , 1993, The American journal of pathology.

[13]  C. Epstein,et al.  Brain infarction is not reduced in SOD-1 transgenic mice after a permanent focal cerebral ischemia. , 1993, Neuroreport.

[14]  G. Mies,et al.  Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. , 1993, Neuroreport.

[15]  W. Heiss,et al.  Dynamic Penumbra Demonstrated by Sequential Multitracer PET after Middle Cerebral Artery Occlusion in Cats , 1994, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[16]  S. Butcher,et al.  Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischaemia , 1994, Nature.

[17]  K. Hossmann Viability thresholds and the penumbra of focal ischemia , 1994, Annals of neurology.

[18]  Jean-Claude Martinou,et al.  Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia , 1994, Neuron.

[19]  M. Chopp,et al.  Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats. , 1995, Stroke.

[20]  F. Fonnum,et al.  Glial‐Neuronal Interactions as Studied by Cerebral Metabolism of [2‐13C]Acetate and [1‐13C]Glucose: An Ex Vivo 13C NMR Spectroscopic Study , 1995, Journal of neurochemistry.

[21]  M D Ginsberg,et al.  Three-Dimensional Image Analysis of Brain Glucose Metabolism-Blood Flow Uncoupling and its Electrophysiological Correlates in the Acute Ischemic Penumbra following Middle Cerebral Artery Occlusion , 1995, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[22]  B. Siesjö,et al.  N-tert-butyl-alpha-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[23]  M. Chopp,et al.  Temporal Profile of in situ DNA Fragmentation after Transient Middle Cerebral Artery Occlusion in the Rat , 1995, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[24]  Delayed treatment with alpha-phenyl-N-tert-butyl nitrone (PBN) attenuates secondary mitochondrial dysfunction after transient focal cerebral ischemia in the rat. , 1996, Neurobiology of disease.

[25]  S. Kuroda,et al.  Delayed Treatment with α-Phenyl-N-tert-butyl Nitrone (PBN) Attenuates Secondary Mitochondrial Dysfunction after Transient Focal Cerebral Ischemia in the Rat , 1996, Neurobiology of Disease.

[26]  M. Moskowitz,et al.  Ischemic Brain Injury is Mediated by the Activation of Poly(ADP-Ribose)Polymerase , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[27]  S. Kuroda,et al.  Activity of Mitochondrial Respiratory Chain Enzymes after Transient Focal Ischemia in the Rat , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[28]  S. Snyder,et al.  Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia , 1997, Nature Medicine.

[29]  M. Calvani,et al.  The entry of [1-13C]glucose into biochemical pathways reveals a complex compartmentation and metabolite trafficking between glia and neurons: a study by 13C-NMR spectroscopy , 1997, Brain Research.

[30]  R. Busto,et al.  Transient Middle Cerebral Artery Occlusion by Intraluminal Suture: I. Three-Dimensional Autoradiographic Image-Analysis of Local Cerebral Glucose Metabolism—Blood Flow Interrelationships during Ischemia and Early Recirculation , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[31]  B. Siesjö,et al.  Extracellular potassium in a neocortical core area after transient focal ischemia. , 1997, Stroke.

[32]  M. Moskowitz,et al.  Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S. Butcher,et al.  Neuroprotective Actions of FK506 in Experimental Stroke: In Vivo Evidence against an Antiexcitotoxic Mechanism , 1997, The Journal of Neuroscience.

[34]  S. Kuroda,et al.  The Immunosuppressant Drug FK506 Ameliorates Secondary Mitochondrial Dysfunction Following Transient Focal Cerebral Ischemia in the Rat , 1997, Neurobiology of Disease.

[35]  T. Ohtsuka,et al.  Expression of Interleukin-1β Converting Enzyme Gene Family and bcl-2 Gene Family in the Rat Brain following Permanent Occlusion of the Middle Cerebral Artery , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[36]  M. Moskowitz,et al.  Activation and Cleavage of Caspase-3 in Apoptosis Induced by Experimental Cerebral Ischemia , 1998, The Journal of Neuroscience.

[37]  M. Moskowitz,et al.  Attenuation of Delayed Neuronal Death after Mild Focal Ischemia in Mice by Inhibition of the Caspase Family , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[38]  M. Fujimura,et al.  Cytosolic Redistribution of Cytochrome C after Transient Focal Cerebral Ischemia in Rats , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[39]  R. A. Waniewski,et al.  Preferential Utilization of Acetate by Astrocytes Is Attributable to Transport , 1998, The Journal of Neuroscience.

[40]  M. Linnik,et al.  Six-hour window of opportunity for calpain inhibition in focal cerebral ischemia in rats. , 1998, Stroke.

[41]  D. Bushinsky,et al.  Calcium , 1998, The Lancet.

[42]  J. B. Hutchins,et al.  Mitochondrial Manganese Superoxide Dismutase Prevents Neural Apoptosis and Reduces Ischemic Brain Injury: Suppression of Peroxynitrite Production, Lipid Peroxidation, and Mitochondrial Dysfunction , 1998, The Journal of Neuroscience.

[43]  S. Kuroda,et al.  Calcium metabolism of focal and penumbral tissues in rats subjected to transient middle cerebral artery occlusion , 1998, Experimental Brain Research.

[44]  Makoto Kawase,et al.  Mitochondrial Susceptibility to Oxidative Stress Exacerbates Cerebral Infarction That Follows Permanent Focal Cerebral Ischemia in Mutant Mice with Manganese Superoxide Dismutase Deficiency , 1998, The Journal of Neuroscience.

[45]  I. Herr,et al.  CD95 Ligand (Fas-L/APO-1L) and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Mediate Ischemia-Induced Apoptosis in Neurons , 1999, The Journal of Neuroscience.

[46]  B. Siesjö,et al.  Posttreatment with the immunosuppressant cyclosporin A in transient focal ischemia , 1999, Brain Research.

[47]  M. Rudin,et al.  Calcineurin inhibitors FK506 and SDZ ASM 981 alleviate the outcome of focal cerebral ischemic/reperfusion injury. , 1999, The Journal of pharmacology and experimental therapeutics.

[48]  T. Oltersdorf,et al.  Neuron-specific transgene expression of Bcl-XL but not Bcl-2 genes reduced lesion size after permanent middle cerebral artery occlusion in mice , 1999, Neuroscience Letters.

[49]  J. Velier,et al.  Caspase-8 and Caspase-3 Are Expressed by Different Populations of Cortical Neurons Undergoing Delayed Cell Death after Focal Stroke in the Rat , 1999, The Journal of Neuroscience.

[50]  N. Sims,et al.  Mitochondrial Respiratory Function and Cell Death in Focal Cerebral Ischemia , 1999, Journal of neurochemistry.

[51]  T. Wieloch,et al.  Blockade of the Mitochondrial Permeability Transition Pore Diminishes Infarct Size in the Rat after Transient Middle Cerebral Artery Occlusion , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[52]  W. Paschen,et al.  Effect of Transient Focal Ischemia of Mouse Brain on Energy State and NAD Levels , 2000, Journal of neurochemistry.

[53]  B. Sola,et al.  Early and sequential recruitment of apoptotic effectors after focal permanent ischemia in mice , 2000, Brain Research.

[54]  M. Hengartner The biochemistry of apoptosis , 2000, Nature.

[55]  T. Sugawara,et al.  The Cytosolic Antioxidant Copper/Zinc-Superoxide Dismutase Prevents the Early Release of Mitochondrial Cytochrome c in Ischemic Brain after Transient Focal Cerebral Ischemia in Mice , 2000, The Journal of Neuroscience.

[56]  D. Rosenbaum,et al.  Fas (CD95/APO‐1) plays a role in the pathophysiology of focal cerebral ischemia , 2000, Journal of neuroscience research.

[57]  P. Vallet,et al.  Cell death is prevented in thalamic fields but not in injured neocortical areas after permanent focal ischaemia in mice overexpressing the anti‐apoptotic protein Bcl‐2 , 2000, The European journal of neuroscience.

[58]  N. Plesnila,et al.  BID mediates neuronal cell death after oxygen/ glucose deprivation and focal cerebral ischemia , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Geirmund Unsgård,et al.  Differences in Neurotransmitter Synthesis and Intermediary Metabolism between Glutamatergic and GABAergic Neurons during 4 Hours of Middle Cerebral Artery Occlusion in the Rat: The Role of Astrocytes in Neuronal Survival , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[60]  F. Diaz,et al.  Long-term neuroprotective effect of inhibiting poly(ADP-ribose) polymerase in rats with middle cerebral artery occlusion using a behavioral assessment , 2001, Brain Research.

[61]  N. Solenski,et al.  Ultrastructural Changes of Neuronal Mitochondria After Transient and Permanent Cerebral Ischemia , 2002, Stroke.

[62]  M. Shibata,et al.  Temporal Profiles of the Subcellular Localization of Bim, a BH3-Only Protein, during Middle Cerebral Artery Occlusion in Mice , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[63]  N. Noshita,et al.  Manganese Superoxide Dismutase Deficiency Exacerbates Cerebral Infarction After Focal Cerebral Ischemia/Reperfusion in Mice: Implications for the Production and Role of Superoxide Radicals , 2002, Stroke.

[64]  N. Sims,et al.  The effects of focal ischemia and reperfusion on the glutathione content of mitochondria from rat brain subregions , 2002, Journal of neurochemistry.

[65]  C. Graffagnino,et al.  Nonocclusion and spontaneous recanalization rates in acute ischemic stroke: a review of cerebral angiography studies. , 2002, Archives of neurology.

[66]  K. Blomgren,et al.  Role of Caspase-3 Activation in Cerebral Ischemia-Induced Neurodegeneration in Adult and Neonatal Brain , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[67]  D. K. Kuharsky,et al.  Bid-mediated Mitochondrial Pathway Is Critical to Ischemic Neuronal Apoptosis and Focal Cerebral Ischemia* , 2002, The Journal of Biological Chemistry.

[68]  N. Plesnila,et al.  Caspase activation and neuroprotection in caspase-3- deficient mice after in vivo cerebral ischemia and in vitro oxygen glucose deprivation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[69]  S. Mori,et al.  Poly(ADP-Ribose) Polymerase Impairs Early and Long-Term Experimental Stroke Recovery , 2002, Stroke.

[70]  Yildirim Sara,et al.  Persistent Defect in Transmitter Release and Synapsin Phosphorylation in Cerebral Cortex After Transient Moderate Ischemic Injury , 2002, Stroke.

[71]  N. Sims,et al.  Mitochondrial contributions to tissue damage in stroke , 2002, Neurochemistry International.

[72]  A. Saito,et al.  Interaction between XIAP and Smac/DIABLO in the Mouse Brain after Transient Focal Cerebral Ischemia , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[73]  J. M. Wardlaw,et al.  Thrombolytic Therapy With Recombinant Tissue Plasminogen Activator for Acute Ischemic Stroke: Where Do We Go From Here? A Cumulative Meta-Analysis , 2003, Stroke.

[74]  I. Ferrer,et al.  Caspase‐dependent and caspase‐independent signalling of apoptosis in the penumbra following middle cerebral artery occlusion in the adult rat , 2003, Neuropathology and applied neurobiology.

[75]  A. Saito,et al.  Overexpression of Copper/Zinc Superoxide Dismutase in Transgenic Mice Protects against Neuronal Cell Death after Transient Focal Ischemia by Blocking Activation of the Bad Cell Death Signaling Pathway , 2003, The Journal of Neuroscience.

[76]  T. Back,et al.  Lesion evolution in cerebral ischemia , 2004, Journal of Neurology.

[77]  C. Szabó,et al.  Poly(ADP-ribose) polymerase inhibition protect neurons and the white matter and regulates the translocation of apoptosis-inducing factor in stroke. , 2004, International journal of molecular medicine.

[78]  N. Sims,et al.  Highly Selective and Prolonged Depletion of Mitochondrial Glutathione in Astrocytes Markedly Increases Sensitivity to Peroxynitrite , 2004, The Journal of Neuroscience.

[79]  N. Plesnila,et al.  Nuclear Translocation of Apoptosis-Inducing Factor after Focal Cerebral Ischemia , 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[80]  N. Diemer,et al.  Reduction of Mitochondrial Electron Transport Complex Activity Is Restricted to the Ischemic Focus After Transient Focal Cerebral Ischemia in Rats: A Histochemical Volumetric Analysis , 2003, Neurochemical Research.

[81]  Warren R. Selman,et al.  Compromised metabolic recovery following spontaneous spreading depression in the penumbra , 2004, Brain Research.

[82]  T. Dawson,et al.  Deadly Conversations: Nuclear-Mitochondrial Cross-Talk , 2004, Journal of bioenergetics and biomembranes.

[83]  R. Ratcheson,et al.  Ischemic Cell Death: Dynamics of Delayed Secondary Energy Failure During Reperfusion Following Focal Ischemia , 2002, Metabolic Brain Disease.

[84]  R. Ratcheson,et al.  Caspase-9 Inhibition after Focal Cerebral Ischemia Improves Outcome following Reversible Focal Ischemia , 2002, Metabolic Brain Disease.

[85]  Dean P. Jones,et al.  The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore , 2004, Nature.

[86]  R. Sapolsky,et al.  Bcl-2 Transfection via Herpes Simplex Virus Blocks Apoptosis-Inducing Factor Translocation after Focal Ischemia in the Rat , 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[87]  FK506 reduces infarct volume due to permanent focal cerebral ischemia by maintaining BAD turnover and inhibiting cytochrome c release , 2004 .

[88]  T. Yanagihara,et al.  Neuroprotective effect of tacrolimus (FK506) on ischemic brain damage following permanent focal cerebral ischemia in the rat. , 2004, Brain research. Molecular brain research.

[89]  B. Siesjö,et al.  Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat , 2004, Experimental Brain Research.

[90]  A. Saito,et al.  Modulation of the Omi/HtrA2 signaling pathway after transient focal cerebral ischemia in mouse brains that overexpress SOD1. , 2004, Brain research. Molecular brain research.

[91]  G. Kroemer,et al.  AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis , 2004, Oncogene.

[92]  A. Saito,et al.  The c-Jun N-Terminal Protein Kinase Signaling Pathway Mediates Bax Activation and Subsequent Neuronal Apoptosis through Interaction with Bim after Transient Focal Cerebral Ischemia , 2004, The Journal of Neuroscience.

[93]  A. Saito,et al.  Oxidative Stress Is Associated With XIAP and Smac/DIABLO Signaling Pathways in Mouse Brains After Transient Focal Cerebral Ischemia , 2004, Stroke.

[94]  N. Plesnila,et al.  Apoptosis-Inducing Factor Triggered by Poly(ADP-Ribose) Polymerase and Bid Mediates Neuronal Cell Death after Oxygen-Glucose Deprivation and Focal Cerebral Ischemia , 2005, The Journal of Neuroscience.

[95]  G. Kim,et al.  Early nuclear translocation of endonuclease G and subsequent DNA fragmentation after transient focal cerebral ischemia in mice , 2005, Neuroscience Letters.

[96]  L. McCullough,et al.  Pharmacological Inhibition of AMP-activated Protein Kinase Provides Neuroprotection in Stroke* , 2005, Journal of Biological Chemistry.

[97]  L. Pettigrew,et al.  The mitochondrial uncoupler 2,4‐dinitrophenol attenuates tissue damage and improves mitochondrial homeostasis following transient focal cerebral ischemia , 2005, Journal of neurochemistry.

[98]  N. Sims,et al.  Astrocytic Function Assessed from 1-14C-Acetate Metabolism after Temporary Focal Cerebral Ischemia in Rats , 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[99]  S. Korsmeyer,et al.  Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[100]  Jeffrey Robbins,et al.  Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death , 2005, Nature.

[101]  Yanqin Gao,et al.  Neuroprotection against Focal Ischemic Brain Injury by Inhibition of c-Jun N-Terminal Kinase and Attenuation of the Mitochondrial Apoptosis-Signaling Pathway , 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[102]  A. Håberg,et al.  Glutamate and GABA metabolism in transient and permanent middle cerebral artery occlusion in rat: Importance of astrocytes for neuronal survival , 2006, Neurochemistry International.

[103]  Anna E Thoren,et al.  Astrocyte metabolism following focal cerebral ischemia , 2006 .

[104]  Tacrolimus (FK506) attenuates biphasic cytochrome c release and Bad phosphorylation following transient cerebral ischemia in mice , 2006, Neuroscience.

[105]  Peter Vandenabeele,et al.  Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. , 2006, Biochimica et biophysica acta.

[106]  T. Dawson,et al.  Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death , 2006, Proceedings of the National Academy of Sciences.

[107]  Michael Nilsson,et al.  The metabolism of 14C‐glucose by neurons and astrocytes in brain subregions following focal cerebral ischemia in rats , 2006 .

[108]  A. Halestrap Calcium, mitochondria and reperfusion injury: a pore way to die. , 2006, Biochemical Society transactions.

[109]  N. Sims,et al.  Inhibition of Nitric Oxide Synthase with 7-Nitroindazole does not Modify Early Metabolic Recovery Following Focal Cerebral Ischemia in Rats , 2007, Neurochemical Research.

[110]  Y. Tsujimoto,et al.  Mitochondrial membrane permeability transition and cell death. , 2006, Biochimica et biophysica acta.

[111]  G. Fiskum,et al.  Mechanisms of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders , 2007, Journal of neuroscience research.

[112]  Guido Kroemer,et al.  Cell death by necrosis: towards a molecular definition. , 2007, Trends in biochemical sciences.

[113]  L. Pettigrew,et al.  Protective effects of NIM811 in transient focal cerebral ischemia suggest involvement of the mitochondrial permeability transition. , 2007, Journal of neurotrauma.

[114]  Lorenzo Galluzzi,et al.  Mitochondrial membrane permeabilization in cell death. , 2007, Physiological reviews.

[115]  Jun Li,et al.  Neuroprotective Effects of Adenosine Monophosphate-Activated Protein Kinase Inhibition and Gene Deletion in Stroke , 2007, Stroke.

[116]  N. Sims,et al.  Mitochondrial glutathione protects against cell death induced by oxidative and nitrative stress in astrocytes , 2007, Journal of neurochemistry.

[117]  R. Quirion,et al.  Apoptosis-inducing factor: A matter of neuron life and death , 2007, Progress in Neurobiology.

[118]  R. Koehler,et al.  Influence of duration of focal cerebral ischemia and neuronal nitric oxide synthase on translocation of apoptosis-inducing factor to the nucleus , 2007, Neuroscience.

[119]  F. Dehghani,et al.  The serine protease Omi/HtrA2 is involved in XIAP cleavage and in neuronal cell death following focal cerebral ischemia/reperfusion , 2007, Neurochemistry International.

[120]  S. L. Mehta,et al.  Molecular targets in cerebral ischemia for developing novel therapeutics , 2007, Brain Research Reviews.

[121]  J. Zimmer,et al.  Nuclear translocation of endonuclease G in degenerating neurons after permanent middle cerebral artery occlusion in mice , 2009, Experimental Brain Research.

[122]  R. Macwalter,et al.  The cost of cerebral ischaemia , 2008, Neuropharmacology.

[123]  D. Viggiano,et al.  Proteolysis of AKAP121 regulates mitochondrial activity during cellular hypoxia and brain ischaemia , 2008, The EMBO journal.

[124]  Mary P. Stenzel-Poore,et al.  Mechanisms of ischemic brain damage , 2008, Neuropharmacology.

[125]  Leif Hertz,et al.  Bioenergetics of cerebral ischemia: A cellular perspective , 2008, Neuropharmacology.

[126]  E. Lo,et al.  Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. , 2008, Trends in pharmacological sciences.

[127]  A. Halestrap,et al.  Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. , 2008, Biochimica et biophysica acta.

[128]  N. Plesnila,et al.  Bid-induced release of AIF from mitochondria causes immediate neuronal cell death , 2008, Cell Death and Differentiation.

[129]  N. Sims,et al.  Alterations in Membrane Potential in Mitochondria Isolated from Brain Subregions During Focal Cerebral Ischemia and Early Reperfusion: Evaluation Using Flow Cytometry , 2009, Neurochemical Research.

[130]  G. Ronnett,et al.  AMPK in the brain: its roles in energy balance and neuroprotection , 2009, Journal of neurochemistry.

[131]  E. Morselli,et al.  Targeting post-mitochondrial effectors of apoptosis for neuroprotection. , 2009, Biochimica et biophysica acta.

[132]  G. Dorn,et al.  Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death , 2022 .