Simultaneous 31P- and 1H-Nuclear Magnetic Resonance Studies of Hypoxia and Ischemia in the Cat Brain

[1]  S Nioka,et al.  Relationship between intracellular pH and energy metabolism in dog brain as measured by 31P-NMR. , 1987, Journal of applied physiology.

[2]  Kortaro Tanaka,et al.  Regional Alterations in Glucose Consumption and Metabolite Levels during Postischemic Recovery in Cat Brain , 1985, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[3]  R. Busto,et al.  Regional Brain Energy Metabolism after Complete versus Incomplete Ischemia in the Rat in the Absence of Severe Lactic Acidosis , 1985, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[4]  M. Schnall,et al.  A technique for simultaneous 1H and 31P NMR at 2.2 T in Vivo , 1985 .

[5]  J. Haselgrove,et al.  In vivo Time-Resolved Brain Phosphorus Nuclear Magnetic Resonance , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[6]  M J Kushmerick,et al.  A simple analysis of the "phosphocreatine shuttle". , 1984, The American journal of physiology.

[7]  C. Tanaka,et al.  In vivo measurement of energy metabolism and the concomitant monitoring of electroencephalogram in experimental cerebral ischemia , 1984, Brain Research.

[8]  P. J Hors,et al.  A new method for water suppression in the proton NMR spectra of aqueous solutions , 1983 .

[9]  R G Shulman,et al.  High-resolution 1H nuclear magnetic resonance study of cerebral hypoxia in vivo. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[10]  W. Pulsinelli,et al.  Regional Energy Balance in Rat Brain After Transient Forebrain Ischemia , 1983, Journal of neurochemistry.

[11]  R G Shulman,et al.  Cerebral metabolic studies in vivo by 31P NMR. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[12]  B. Siesjö,et al.  Intracellular pH in the Brain following Transient Ischemia , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[13]  A. Ames,et al.  Pathophysiology of ischemic cell death: I. Time of onset of irreversible damage; importance of the different components of the ischemic insult. , 1983, Stroke.

[14]  M. Raichle The pathophysiology of brain ischemia , 1983, Annals of neurology.

[15]  Takaaki Kirino,et al.  Delayed neuronal death in the gerbil hippocampus following ischemia , 1982, Brain Research.

[16]  E. Shoubridge,et al.  31P NMR saturation transfer measurements of the steady state rates of creatine kinase and ATP synthetase in the rat brain , 1982, FEBS letters.

[17]  S. Rehncrona,et al.  Brain Cortical Fatty Acids and Phospholipids During and Following Complete and Severe Incomplete Ischemia , 1982, Journal of neurochemistry.

[18]  Y. Seo,et al.  High-resolution proton magnetic resonance spectra of muscle. , 1981, Biochimica et biophysica acta.

[19]  S. Rehncrona,et al.  Brain Lactic Acidosis and Ischemic Cell Damage: 1. Biochemistry and Neurophysiology , 1981, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[20]  H A Krebs,et al.  Cytosolic phosphorylation potential. , 1979, The Journal of biological chemistry.

[21]  B. Chance,et al.  Detection of 31P nuclear magnetic resonance signals in brain by in vivo and freeze-trapped assays. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[22]  M. Ginsberg,et al.  Diffuse cerebral ischemia in the cat: II. Regional metabolites during severe ischemia and recirculation , 1978, Annals of neurology.

[23]  W H Oldendorf,et al.  TRANSPORT OF METABOLIC SUBSTRATES THROUGH THE BLOOD‐BRAIN BARRIER 1 , 1977, Journal of neurochemistry.

[24]  R. Myers,et al.  EFFECTS OF SERUM CLUCOSE CONCENTRATION ON BRAIN RESPONSE TO CIRCULA–TORY ARREST: 4 , 1976 .

[25]  R. Ratcheson,et al.  Cerebral metabolic state following complete compression ischemia. , 1974, Brain research.

[26]  B. Siesjö,et al.  MECHANISMS ACTIVATING GLYCOLYSIS IN THE BRAIN IN ARTERIAL HYPOXIA , 1974, Journal of neurochemistry.

[27]  J. Davis,et al.  THE EFFECT OF HYPOXIA ON MONOAMINE SYNTHESIS, LEVELS AND METABOLISM IN RAT BRAIN , 1973, Journal of neurochemistry.

[28]  D. Gilboe,et al.  Glycolysis and the permeation of glucose and lactate in the isolated, perfused dog brain during anoxia and postanoxic recovery. , 1973, The Journal of biological chemistry.

[29]  O. H. Lowry,et al.  CEREBRAL CARBOHYDRATE METABOLISM DURING ACUTE HYPOXIA AND RECOVERY 1 , 1972, Journal of neurochemistry.

[30]  D. Bray,et al.  Actin in growing nerve cells. , 1971, Nature: New biology.

[31]  B. Siesjö,et al.  The influence of arterial hypoxemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentrations in the rat brain. , 1971, Scandinavian journal of clinical and laboratory investigation.

[32]  D. Chapman,et al.  Nuclear magnetic resonance studies of erythrocyte membranes. , 1968, Journal of molecular biology.

[33]  J. Vane,et al.  Half-lives of Peptides and Amines in the Circulation , 1967, Nature.

[34]  E. M. Pantelouris CHAPTER 29 – REGULATION OF pH , 1967 .

[35]  A. Szent-Györgyi,et al.  Exchange of adenosine diphosphate bound to actin in superprecipitated actomyosin and contracted myofibrils. , 1966, Journal of molecular biology.

[36]  T. Vates,et al.  NA-K ACTIVATED ADENOSINE TRIPHOSPHATASE FORMATION OF CEREBROSPINAL FLUID IN THE CAT. , 1964, The American journal of physiology.

[37]  O. H. Lowry,et al.  EFFECT OF ISCHEMIA ON KNOWN SUBSTRATES AND COFACTORS OF THE GLYCOLYTIC PATHWAY IN BRAIN. , 1964, The Journal of biological chemistry.

[38]  L G WHITBY,et al.  The fate of H3-norepinephrine in animals. , 1961, The Journal of pharmacology and experimental therapeutics.

[39]  J. Axelrod,et al.  The physiological disposition of H3-epinephrine and its metabolite metanephrine. , 1959, The Journal of pharmacology and experimental therapeutics.

[40]  L. Warren,et al.  The thiobarbituric acid assay of sialic acids. , 1959, The Journal of biological chemistry.

[41]  J. E. Webster,et al.  CEREBRAL METABOLISM IN HYPOXIA , 1944 .