Time Series Forecasting Using Restricted Boltzmann Machine

In this study, we propose a method for time series prediction using restricted Boltzmann machine (RBM), which is one of stochastic neural networks. The idea comes from Hinton & Salakhutdinov’s multilayer “encoder” network which realized dimensionality reduction of data. A 3-layer deep network of RBMs is constructed and after pre-training RBMs using their energy functions, gradient descent training (error back propagation) is adopted to execute fine-tuning. Additionally, to deal with the problem of neural network structure determination, particle swarm optimization (PSO) is used to find the suitable number of units and parameters. Moreover, a preprocessing, “trend removal” to the original data, was also performed in the forecasting. To compare the proposed predictor with conventional neural network method, i.e., multi-layer perceptron (MLP), CATS benchmark data was used in the prediction experiments.