Low-temperature processed natural hematite as an electron extraction layer for efficient and stable perovskite solar cells

[1]  Huangzhong Yu,et al.  Reduced Open‐Circuit Voltage Loss of Perovskite Solar Cells via Forming p/p+ Homojunction and Interface Electric Field on the Surfaces of Perovskite Film , 2022, Advanced Energy Materials.

[2]  Tao Liu,et al.  Bifunctional interface modification for efficient and UV-robust α-Fe2O3-based planar organic–inorganic hybrid perovskite solar cells , 2022, Advanced Composites and Hybrid Materials.

[3]  A. A. Qureshi,et al.  Systematic Investigation of Structural, Morphological, Thermal, Optoelectronic, and Magnetic Properties of High-Purity Hematite/Magnetite Nanoparticles for Optoelectronics , 2022, Nanomaterials.

[4]  Yizhong Huang,et al.  Recent review on electron transport layers in perovskite solar cells , 2022, International Journal of Energy Research.

[5]  Burak Gultekin,et al.  Decreased surface defects and non-radiative recombination via the passivation of the halide perovskite film by 2-thiophenecarboxylic acid in triple-cation perovskite solar cells. , 2022, Physical chemistry chemical physics : PCCP.

[6]  Yang Yang,et al.  Stability-limiting heterointerfaces of perovskite photovoltaics , 2022, Nature.

[7]  Huangzhong Yu,et al.  Amino‐Functionalized Niobium‐Carbide MXene Serving as Electron Transport Layer and Perovskite Additive for the Preparation of High‐Performance and Stable Methylammonium‐Free Perovskite Solar Cells , 2022, Advanced Functional Materials.

[8]  S. Liu,et al.  Wide‐Bandgap Organic–Inorganic Lead Halide Perovskite Solar Cells , 2022, Advanced science.

[9]  Dong Suk Kim,et al.  Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells , 2022, Science.

[10]  C. Dimitrakopoulos,et al.  Monolayer CVD Graphene Barrier Enhances the Stability of Planar p–i–n Organic–Inorganic Metal Halide Perovskite Solar Cells , 2021, ACS Applied Energy Materials.

[11]  Barry P Rand,et al.  Roadmap on organic–inorganic hybrid perovskite semiconductors and devices , 2021, APL Materials.

[12]  Jun Hee Lee,et al.  Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells , 2021, Nature.

[13]  Huangzhong Yu,et al.  Reduced energy loss enabled by thiophene-based interlayers for high performance and stable perovskite solar cells , 2021 .

[14]  Seong Sik Shin,et al.  Efficient perovskite solar cells via improved carrier management , 2021, Nature.

[15]  Timothy W. Jones,et al.  Inorganic Electron Transport Materials in Perovskite Solar Cells , 2020, Advanced Functional Materials.

[16]  Tzung‐Fang Guo,et al.  Low-temperature processed bipolar metal oxide charge transporting layers for highly efficient perovskite solar cells , 2020 .

[17]  Wei Chen,et al.  Metal oxide charge transport layers in perovskite solar cells—optimising low temperature processing and improving the interfaces towards low temperature processed, efficient and stable devices , 2020, Journal of Physics: Energy.

[18]  Huangzhong Yu,et al.  ZnO/Ti3C2Tx monolayer electron transport layers with enhanced conductivity for highly efficient inverted polymer solar cells , 2020 .

[19]  Yuelong Huang,et al.  The Effects of Annealing Time on Triple Cation Perovskite Films and Their Solar Cells. , 2020, ACS applied materials & interfaces.

[20]  S. Tiwari,et al.  A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status , 2020 .

[21]  Xiaodang Zhang,et al.  NiOx/Spiro Hole Transport Bilayers for Stable Perovskite Solar Cells with Efficiency Exceeding 21% , 2020 .

[22]  Jia Zhu,et al.  Simultaneous Contact and Grain‐Boundary Passivation in Planar Perovskite Solar Cells Using SnO2‐KCl Composite Electron Transport Layer , 2019, Advanced Energy Materials.

[23]  Dieter Neher,et al.  Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces , 2019, Advanced materials.

[24]  S. Ghosh,et al.  Role of ionic liquids in organic-inorganic metal halide perovskite solar cells efficiency and stability , 2019, Nano Energy.

[25]  Yongpeng Liu,et al.  Hematite Photoanodes for Solar Water Splitting: A Detailed Spectroelectrochemical Analysis on the pH-Dependent Performance , 2019, ACS Applied Energy Materials.

[26]  Jae‐Joon Lee,et al.  A stable triple-cation (Cs+-MA+-FA+) perovskite powder formation under ambient conditions for a hysteresis-free high efficiency solar cells. , 2019, ACS applied materials & interfaces.

[27]  Seong Sik Shin,et al.  Metal Oxide Charge Transport Layers for Efficient and Stable Perovskite Solar Cells , 2019, Advanced Functional Materials.

[28]  Sujuan Wu,et al.  Solvent‐Assisted Low‐Temperature Crystallization of SnO2 Electron‐Transfer Layer for High‐Efficiency Planar Perovskite Solar Cells , 2019, Advanced Functional Materials.

[29]  Istiak Hussain,et al.  Functional materials, device architecture, and flexibility of perovskite solar cell , 2018, Emergent Materials.

[30]  Nakita K. Noel,et al.  Hysteresis Index: A Figure without Merit for Quantifying Hysteresis in Perovskite Solar Cells , 2018, ACS Energy Letters.

[31]  Dong Yang,et al.  High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2 , 2018, Nature Communications.

[32]  T. Park,et al.  Solution Processable Inorganic–Organic Double‐Layered Hole Transport Layer for Highly Stable Planar Perovskite Solar Cells , 2018, Advanced Energy Materials.

[33]  Steve Albrecht,et al.  How to Make over 20% Efficient Perovskite Solar Cells in Regular (n–i–p) and Inverted (p–i–n) Architectures , 2018, Chemistry of Materials.

[34]  Jing Ren,et al.  Synergistic Hematite‐Fullerene Electron‐Extracting Layers for Improved Efficiency and Stability in Perovskite Solar Cells , 2018 .

[35]  I. Mora‐Seró,et al.  Interfaces in Perovskite Solar Cells , 2017 .

[36]  Zhanhu Guo,et al.  Hematite electron-transporting layers for environmentally stable planar perovskite solar cells with enhanced energy conversion and lower hysteresis , 2017 .

[37]  Rajan Jose,et al.  Progress, challenges and perspectives in flexible perovskite solar cells , 2016 .

[38]  Thomas Pfadler,et al.  Characterization of perovskite solar cells: Towards a reliable measurement protocol , 2016 .

[39]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[40]  J. Barber,et al.  Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting. , 2015, Nano letters.

[41]  Priti Tiwana,et al.  Electron mobility and injection dynamics in mesoporous ZnO, SnO₂, and TiO₂ films used in dye-sensitized solar cells. , 2011, ACS nano.

[42]  E. Carter,et al.  Electron transport in pure and doped hematite. , 2011, Nano letters.

[43]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.