Complexity measures of sign matrices

In this paper we consider four previously known parameters of sign matrices from a complexity-theoretic perspective. The main technical contributions are tight (or nearly tight) inequalities that we establish among these parameters. Several new open problems are raised as well.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  M. Murty Ramanujan Graphs , 1965 .

[3]  Leslie G. Valiant,et al.  Graph-Theoretic Arguments in Low-Level Complexity , 1977, MFCS.

[4]  Vojtech Rödl,et al.  Geometrical realization of set systems and probabilistic communication complexity , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[5]  G. Pisier Factorization of Linear Operators and Geometry of Banach Spaces , 1986 .

[6]  Janos Simon,et al.  Probabilistic Communication Complexity , 1986, J. Comput. Syst. Sci..

[7]  N. Tomczak-Jaegermann Banach-Mazur distances and finite-dimensional operator ideals , 1989 .

[8]  A. Nilli On the second eigenvalue of a graph , 1991 .

[9]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[10]  On rank vs. communication complexity , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[11]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[12]  Vojtech Rödl,et al.  Some combinatorial-algebraic problems from complexity theory , 1994, Discret. Math..

[13]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[14]  Satyanarayana V. Lokam Spectral methods for matrix rigidity with applications to size-depth tradeoffs and communication complexity , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[15]  E. Szemerédi,et al.  On the probability that a random ±1-matrix is singular , 1995 .

[16]  R. Bhatia Matrix Analysis , 1996 .

[17]  M. Talagrand New concentration inequalities in product spaces , 1996 .

[18]  Eyal Kushilevitz,et al.  Communication Complexity: Index of Notation , 1996 .

[19]  Eyal Kushilevitz,et al.  Communication Complexity , 1997, Adv. Comput..

[20]  Daniel A. Spielman,et al.  A Remark on Matrix Rigidity , 1997, Inf. Process. Lett..

[21]  J. C. BurgesChristopher A Tutorial on Support Vector Machines for Pattern Recognition , 1998 .

[22]  A. Razborov,et al.  Improved lower bounds on the rigidity of Hadamard matrices , 1998 .

[23]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[24]  Shai Ben-David,et al.  Limitations of Learning Via Embeddings in Euclidean Half Spaces , 2003, J. Mach. Learn. Res..

[25]  Hans Ulrich Simon,et al.  Estimating the Optimal Margins of Embeddings in Euclidean Half Spaces , 2001, COLT/EuroCOLT.

[26]  Satyanarayana V. Lokam Spectral Methods for Matrix Rigidity with Applications to Size-Depth Trade-offs and Communication Complexity , 2001, J. Comput. Syst. Sci..

[27]  Satyanarayana V. Lokam,et al.  Relations Between Communication Complexity, Linear Arrangements, and Computational Complexity , 2001, FSTTCS.

[28]  Jürgen Forster A linear lower bound on the unbounded error probabilistic communication complexity , 2002, J. Comput. Syst. Sci..

[29]  Joel Friedman,et al.  A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.

[30]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[31]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[32]  T. Tao,et al.  On the singularity probability of random Bernoulli matrices , 2005, math/0501313.

[33]  Santosh S. Vempala,et al.  An algorithmic theory of learning: Robust concepts and random projection , 1999, Machine Learning.