Q A ] 1 N ov 2 00 3 Symmetric Coalgebras
暂无分享,去创建一个
[1] Stefaan Caenepeel,et al. Frobenius and Separable Functors for Generalized Module Categories and Nonlinear Equations , 2002 .
[2] S. Raianu,et al. Hopf algebras : an introduction , 2001 .
[3] L. Grunenfelder,et al. Constructing Pointed Hopf Algebras by Ore Extensions , 2000 .
[4] L. Kadison. New Examples of Frobenius Extensions , 1999 .
[5] A. Stolin,et al. An Approach to Hopf Algebras via Frobenius Coordinates , 1999 .
[6] Tsit Yuen Lam,et al. Lectures on modules and rings , 1998 .
[7] Lowell Abrams. Modules, Comodules, and Cotensor Products over Frobenius Algebras , 1998, math/9806044.
[8] L. Grunenfelder,et al. Finiteness Conditions, Co-Frobenius Hopf Algebras, and Quantum Groups , 1998 .
[9] M. Lorenz. Representations of Finite-Dimensional Hopf Algebras , 1997 .
[10] H. Schneider,et al. Frobenius extensions of subalgebras of Hopf algebras , 1997 .
[11] S. Raianu,et al. Graded coalgebras and Morita-Takeuchi contexts , 1995 .
[12] C. Nastasescu,et al. Quasi-co-Frobenius Coalgebras , 1995 .
[13] Rolf Farnsteiner. On Frobenius Extensions Defined by Hopf Algebras , 1994 .
[14] Susan Montgomery,et al. Hopf algebras and their actions on rings , 1993 .
[15] S. Woronowicz,et al. Quantum deformation of lorentz group , 1990 .
[16] Irving Reiner,et al. Methods of Representation Theory , 1981 .
[17] J. Humphreys. Symmetry for finite dimensional Hopf algebras , 1978 .
[18] D. Radford. Finiteness conditions for a hopf algebra with a nonzero integral , 1977 .
[19] U. Oberst,et al. Über Untergruppen Endlicher Algebraischer Gruppen , 1973 .
[20] Bodo Pareigis,et al. When Hopf algebras are Frobenius algebras , 1971 .
[21] R. Larson. Characters of Hopf algebras , 1971 .
[22] Richard G. Larson,et al. An Associative Orthogonal Bilinear Form for Hopf Algebras , 1969 .