High sensitivity plasmonic sensing based on Fano interference in a rectangular ring waveguide

Abstract We investigate a plasmonic waveguide system using 2-dimension finite element method, which consists of a rectangular ring metal–insulator–metal waveguide and a baffle. Numerical simulations results show that the sharp and asymmetric Fano-line shapes can be created by the proposed structure, because of the interaction between the strong trapped resonance in the FP resonator and the weak resonance in the stub resonator. An analytic model based on the scattering matrix theory is utilized to describe and explain this phenomenon. The physical features contribute to a highly efficient plasmonic nanosensor for refractive index sensing with the sensitivity of 1300 nm/RIU and a figure of merit of 6838. This plasmonic structure with such high figure of merits may find important applications in the on-chip nanosensors.

[1]  Bing Wang,et al.  Surface plasmon polariton propagation in nanoscale metal gap waveguides. , 2004, Optics letters.

[2]  Pierre Berini,et al.  Amplification of long-range surface plasmons by a dipolar gain medium , 2010 .

[3]  G. Wurtz,et al.  Optical bistability in nonlinear surface-plasmon polaritonic crystals. , 2006, Physical review letters.

[4]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[5]  Qihuang Gong,et al.  Compact and high-resolution plasmonic wavelength demultiplexers based on Fano interference. , 2011, Optics express.

[6]  Harald Giessen,et al.  Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. , 2009, Nature materials.

[7]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[8]  X. Huang,et al.  Plasmonic Electro-Optical Switches Operating at Telecom Wavelengths , 2011 .

[9]  Shanhui Fan,et al.  Sharp asymmetric line shapes in side-coupled waveguide-cavity systems , 2002 .

[10]  Y. Kivshar,et al.  Nonlinear nanofocusing in tapered plasmonic waveguides. , 2010, Physical review letters.

[11]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[12]  Mark L. Brongersma,et al.  Plasmonics: the next chip-scale technology , 2006 .

[13]  H. Haus Waves and fields in optoelectronics , 1983 .

[14]  P. Nordlander,et al.  Removing a wedge from a metallic nanodisk reveals a fano resonance. , 2011, Nano letters.

[15]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[16]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[17]  U. Hohenester,et al.  The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing , 2010 .

[18]  He-Zhou Wang,et al.  The transmission characteristics of surface plasmon polaritons in ring resonator. , 2009, Optics express.

[19]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[20]  Xueming Liu,et al.  Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. , 2012, Optics letters.

[21]  Xian-Shi Lin,et al.  Tooth-shaped plasmonic waveguide filters with nanometeric sizes. , 2008, Optics letters.

[22]  Yan Pennec,et al.  Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths , 2009 .

[23]  D. Ceglia,et al.  All-optical switching at the Fano resonances in subwavelength gratings with very narrow slits. , 2011, Optics letters.

[24]  Naomi J. Halas,et al.  A plasmonic Fano switch. , 2012, Nano letters.

[25]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[26]  D P Tsai,et al.  Spectral collapse in ensembles of metamolecules. , 2009, Physical review letters.