Development of the superconducting detectors and read-out for the X-IFU instrument on board of the X-ray observatory Athena

Abstract The Advanced Telescope for High-Energy Astrophysics (Athena) has been selected by ESA as its second large-class mission. The future European X-ray observatory will study the hot and energetic Universe with its launch foreseen in 2028. Microcalorimeters based on superconducting Transition-edge sensor (TES) are the chosen technology for the detectors array of the X-ray Integral Field Unit (X-IFU) on board of Athena. The X-IFU is a 2-D imaging integral-field spectrometer operating in the soft X-ray band (0.3–12 keV). The detector consists of an array of 3840 TESs coupled to X-ray absorbers and read out in the MHz bandwidth using Frequency Domain Multiplexing (FDM) based on Superconducting QUantum Interference Devices (SQUIDs). The proposed design calls for devices with a high filling-factor, high quantum efficiency, relatively high count-rate capability and an energy resolution of 2.5 eV at 5.9 keV. The paper will review the basic principle and the physics of the TES-based microcalorimeters and present the state-of-the art of the FDM read-out.

[1]  Didier D. E. Martin,et al.  Modelling the Resistive State in a Transition Edge Sensor , 2011 .

[2]  Marcel P. Bruijn,et al.  Baseband Feedback for Frequency‐Domain‐Multiplexed Readout of TES X‐ray Detectors , 2009 .

[3]  Luigi Piro,et al.  Athena: the X-ray observatory to study the hot and energetic Universe , 2015 .

[4]  Pourya Khosropanah,et al.  Josephson effects in an alternating current biased transition edge sensor , 2014 .

[5]  B. Alpert,et al.  A high resolution gamma-ray spectrometer based on superconducting microcalorimeters. , 2012, The Review of scientific instruments.

[6]  Simon R. Bandler,et al.  Proximity effects and nonequilibrium superconductivity in transition-edge sensors , 2011, 1108.4632.

[7]  Kent D. Irwin,et al.  Optimized transition-edge x-ray microcalorimeter with 2.4eV energy resolution at 5.9keV , 2005 .

[8]  Simon R. Bandler,et al.  Uniformity of Kilo-Pixel Arrays of Transition-Edge Sensors for X-ray Astronomy , 2015, IEEE Transactions on Applied Superconductivity.

[9]  M. P. Bruijn,et al.  Nearly Quantum Limited Two-Stage SQUID Amplifiers for the Frequency Domain Multiplexing of TES Based X-ray and Infrared Detectors , 2015, IEEE Transactions on Applied Superconductivity.

[10]  Simon R. Bandler,et al.  Close-packed Arrays of Transition-edge X-ray Microcalorimeters with High Spectral Resolution at 5.9 keV , 2008 .

[11]  Andrew G. Glen,et al.  APPL , 2001 .

[12]  Konstantin K. Likharev,et al.  Superconducting weak links , 1979 .

[13]  Bradley K. Alpert,et al.  Optimization of the TES-Bias Circuit for a Multiplexed Microcalorimeter Array , 2012 .

[14]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[15]  Marcel P. Bruijn,et al.  High-Q LC Filters for FDM Read out of Cryogenic Sensor Arrays , 2012 .

[16]  Simon R. Bandler,et al.  Implications of weak-link behavior on the performance of Mo/Au bilayer transition-edge sensors , 2013 .

[17]  Christian Enss,et al.  Cryogenic particle detection , 2005 .

[18]  Norman H. R. Baars,et al.  Implementation of frequency domain multiplexing in imaging arrays of microcalorimeters , 2004 .

[19]  Simon R. Bandler,et al.  Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics , 2012 .

[20]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.