The activities of the international precipitation working group

The International Precipitation Working Group (IPWG) is a permanent International Science Working Group (ISWG) of the Coordination Group for Meteorological Satellites (CGMS), co‐sponsored by CGMS and the World Meteorological Organization (WMO). The IPWG provides a focal point and forum for the international scientific community to address the issues and challenges of satellite‐based quantitative precipitation retrievals, and for the operational agencies to access and make use of precipitation products. Through partnerships and biennial meetings, the group supports the exchange of information on techniques for retrieving and measuring precipitation and for enhancing the impact of space‐borne precipitation retrievals in numerical weather and hydrometeorological prediction and climate studies. The group furthers the refinement of current estimation techniques and the development of new methodologies for improved global precipitation measurements, together with the validation of the derived precipitation products with ground‐based precipitation measurements. The IPWG identifies critical issues, provides recommendations to the CGMS and supports upcoming precipitation‐oriented missions. Training activities on precipitation retrieval from space are also part of the IPWG mandate in cooperation with WMO and other bodies.

[1]  W. Petersen,et al.  Global precipitation measurement: Methods, datasets and applications , 2012 .

[2]  Ardeshir M. Ebtehaj,et al.  Microwave retrievals of terrestrial precipitation over snow-covered surfaces: a lesson from the GPM satellite. , 2017 .

[3]  Paolo Sano,et al.  Lightning-based propagation of convective rain fields , 2011 .

[4]  T. L’Ecuyer,et al.  A Shallow Cumuliform Snowfall Census Using Spaceborne Radar , 2016 .

[5]  Tim J. Hewison,et al.  Radiometric characterization of AMSU-B , 1995 .

[6]  Rolf Stuhlmann,et al.  Observations depuis l'orbite géostationnaire avec Meteosat troisième génération (MTG) , 2017 .

[7]  Nishan Kumar Biswas,et al.  Growing More with Less Using Cell Phones and Satellite Data , 2017 .

[8]  Emmanouil N. Anagnostou,et al.  Assessment of the Use of Lightning Information in Satellite Infrared Rainfall Estimation , 2000 .

[9]  Ralph Ferraro,et al.  Special sensor microwave imager derived global rainfall estimates for climatological applications , 1997 .

[10]  Ralph Ferraro,et al.  A prototype hail detection algorithm and hail climatology developed with the advanced microwave sounding unit (AMSU) , 2015 .

[11]  M. Goldberg,et al.  Joint Polar Satellite System: The United States next generation civilian polar‐orbiting environmental satellite system , 2013 .

[12]  Christian D. Kummerow,et al.  The Remote Sensing of Clouds and Precipitation from Space: A Review , 2007 .

[13]  Michael A. Turk,et al.  The Tropical Rainfall Potential (TRaP) Technique. Part I: Description and Examples , 2005 .

[14]  Jiancheng Shi,et al.  The Future of Earth Observation in Hydrology. , 2017, Hydrology and earth system sciences.

[15]  Elizabeth E. Ebert,et al.  Ensemble Tropical Rainfall Potential (eTRaP) Forecasts , 2011 .

[16]  Robert F. Adler,et al.  A Proposed Tropical Rainfall Measuring Mission (TRMM) Satellite , 1988 .

[17]  Domenico Solimini,et al.  MICROWAVE RADIOMETRY AND REMOTE SENSING OF THE ENVIRONMENT , 1995 .

[18]  F. Joseph Turk,et al.  Precipitation from Space: Advancing Earth System Science , 2013 .

[19]  Ralf Bennartz,et al.  A triple‐frequency approach to retrieve microphysical snowfall parameters , 2011 .

[20]  Takuji Kubota,et al.  Improvement of TMI Rain Retrievals in Mountainous Areas , 2013 .

[21]  D. Stumm,et al.  Natural Hazards and Earth System Sciences , 2002 .

[22]  Chris Kidd,et al.  Global precipitation measurements for validating climate models , 2017 .

[23]  Frank S. Marzano,et al.  Results of WetNet PIP-2 Project , 1998 .

[24]  Erin Jones,et al.  NASA’s Remotely Sensed Precipitation: A Reservoir for Applications Users , 2017 .

[25]  David M. Winker,et al.  CLOUDSAT AND CALIPSO WITHIN THE A-TRAIN Ten Years of Actively Observing the Earth System , 2018 .

[26]  G. Stephens,et al.  The CloudSat Mission and the A-Train: A Revolutionary Approach to Observing Earth's Atmosphere , 2008, 2008 IEEE Aerospace Conference.

[27]  Giulia Panegrossi,et al.  The validation service of the hydrological SAF geostationary and polar satellite precipitation products , 2014 .

[28]  Byung-Ju Sohn,et al.  Validation of Satellite-Based High-Resolution Rainfall Products over the Korean Peninsula Using Data from a Dense Rain Gauge Network , 2010 .

[29]  William J. Koshak,et al.  The GOES-R GeoStationary Lightning Mapper (GLM) , 2012 .

[30]  Nai-Yu Wang,et al.  Improving Geostationary Satellite Rainfall Estimates Using Lightning Observations: Underlying Lightning–Rainfall–Cloud Relationships , 2013 .

[31]  F. Joseph Turk,et al.  Requirements for a robust precipitation constellation , 2016, 2016 14th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad).

[32]  Application of lightning to passive microwave convective and stratiform partitioning in passive microwave rainfall retrieval algorithm over land from TRMM , 2012 .

[33]  Christian Kummerow,et al.  Toward an Intercalibrated Fundamental Climate Data Record of the SSM/I Sensors , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[34]  A. Gruber,et al.  Results from the GPCP Algorithm Intercomparison Programme , 1996 .

[35]  Nai-Yu Wang,et al.  Quantifying the Snowfall Detection Performance of the GPM Microwave Imager Channels over Land , 2017 .

[36]  F. Joseph Turk,et al.  Evaluating High-Resolution Precipitation Products , 2008 .

[37]  Kuolin Hsu,et al.  Intercomparison of High-Resolution Precipitation Products over Northwest Europe , 2012 .

[38]  F. Turk,et al.  Validating a rapid-update satellite precipitation analysis across telescoping space and time scales , 2009 .

[39]  Giulia Panegrossi,et al.  Precipitation products from the hydrology SAF , 2013 .

[40]  Paul Lee,et al.  Advanced technology microwave sounder on the National Polar-Orbiting Operational Environmental Satellite System , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[41]  Riko Oki,et al.  THE GLOBAL PRECIPITATION MEASUREMENT (GPM) MISSION FOR SCIENCE AND SOCIETY. , 2017, Bulletin of the American Meteorological Society.

[42]  C. Klepp The oceanic shipboard precipitation measurement network for surface validation — OceanRAIN , 2014 .

[43]  James P. Hollinger,et al.  SSM/I instrument evaluation , 1990 .

[44]  Arkady Tsinober,et al.  On the Status , 2014 .

[45]  Ali Behrangi,et al.  What does CloudSat reveal about global land precipitation detection by other spaceborne sensors? , 2014 .

[46]  Ralph Ferraro,et al.  The Fourth International Precipitation Working Group Workshop , 2010 .

[47]  Bradley Zavodsky,et al.  A 1DVAR‐based snowfall rate retrieval algorithm for passive microwave radiometers , 2017 .

[48]  V. Levizzani,et al.  Status of satellite precipitation retrievals , 2009 .

[49]  Michael A. Turk,et al.  The Tropical Rainfall Potential (TRaP) Technique. Part II: Validation , 2005 .

[50]  Y. Hao,et al.  Recent Pre-Launch Improvements to the GOES-R Rainfall Rate Algorithm , 2016 .

[51]  R. Adler,et al.  Intercomparison of global precipitation products : The third Precipitation Intercomparison Project (PIP-3) , 2001 .

[52]  R. Roca,et al.  Comparing Satellite and Surface Rainfall Products over West Africa at Meteorologically Relevant Scales during the AMMA Campaign Using Error Estimates , 2010 .

[53]  Hans Bonekamp,et al.  An Introduction to the EUMETSAT Polar system , 2007 .

[54]  U. Schneider,et al.  The new portfolio of global precipitation data products of the Global Precipitation Climatology Centre suitable to assess and quantify the global water cycle and resources , 2016 .

[55]  Ziad S. Haddad,et al.  RaInCube: a proposed constellation of atmospheric profiling radars in cubesat , 2016, SPIE Asia-Pacific Remote Sensing.

[56]  J. Dozier,et al.  Inroads of remote sensing into hydrologic science during the WRR era , 2015 .

[57]  Steven D. Miller,et al.  NPOESS: Next-Generation Operational Global Earth Observations , 2010 .

[58]  Ye Hong,et al.  Design and Evaluation of the First Special Sensor Microwave Imager/Sounder , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[59]  Simone Tanelli,et al.  Hail-Detection Algorithm for the GPM Core Observatory Satellite Sensors , 2017 .

[60]  Ralph Ferraro,et al.  Satellite Precipitation Measurements for Water Resource Monitoring 1 , 2009 .

[61]  T. N. Krishnamurti,et al.  The status of the tropical rainfall measuring mission (TRMM) after two years in orbit , 2000 .

[62]  Munehisa K. Yamamoto,et al.  Implementation of an orographic/nonorographic rainfall classification scheme in the GSMaP algorithm for microwave radiometers , 2015 .

[63]  Shannon T. Brown,et al.  Overview of Temporal Experiment for Storms and Tropical Systems (TEMPEST) CubeSat constellation mission , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[64]  Munehisa K. Yamamoto,et al.  Further Improvement of the Heavy Orographic Rainfall Retrievals in the GSMaP Algorithm for Microwave Radiometers , 2017 .

[65]  J. Janowiak,et al.  COMPARISON OF NEAR-REAL-TIME PRECIPITATION ESTIMATES FROM SATELLITE OBSERVATIONS AND NUMERICAL MODELS , 2007 .

[66]  Kuolin Hsu,et al.  Hydrologic evaluation of satellite precipitation products over a mid-size basin , 2011 .

[67]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[68]  R. Roebeling,et al.  Operational climate monitoring from space: the EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF) , 2008 .

[69]  C. Kummerow,et al.  The Tropical Rainfall Measuring Mission (TRMM) Sensor Package , 1998 .

[70]  H. M. Goodman,et al.  The First WetNet Precipitation Intercomparison Project (PIP-1) , 1994 .

[71]  A. Cazenave,et al.  The ESA Climate Change Initiative: Satellite Data Records for Essential Climate Variables , 2013 .

[72]  Vincenzo Levizzani,et al.  Detection and Measurement of Snowfall from Space , 2011, Remote. Sens..

[73]  Jaap Schellekens,et al.  MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data , 2016 .

[74]  Sophie Cloché,et al.  The Megha-Tropiques mission: a review after three years in orbit , 2015, Front. Earth Sci..

[75]  Catherine Prigent,et al.  Precipitation retrieval from space: An overview , 2010 .

[76]  V. Levizzani,et al.  Evaluation of Monthly Satellite-Derived Precipitation Products over East Africa , 2016 .

[77]  F. Joseph Turk,et al.  Measuring Precipitation from Space: EURAINSAT and the Future , 2007 .

[78]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[79]  Viviana Maggioni,et al.  A Review of Merged High-Resolution Satellite Precipitation Product Accuracy during the Tropical Rainfall Measuring Mission (TRMM) Era , 2016 .

[80]  G. Stout,et al.  Atmospheric research. , 1973, Science.

[81]  U. Schneider,et al.  A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present , 2012 .

[82]  Dennis P. Lettenmaier,et al.  Observational breakthroughs lead the way to improved hydrological predictions , 2017 .

[83]  Misako Kachi,et al.  Verification of High-Resolution Satellite-Based Rainfall Estimates around Japan Using a Gauge-Calibrated Ground-Radar Dataset , 2009 .

[84]  W. Wagner,et al.  Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data , 2014 .

[85]  Keiji Imaoka,et al.  The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies , 2003, IEEE Trans. Geosci. Remote. Sens..

[86]  P. Joe,et al.  So, how much of the Earth's surface is covered by rain gauges? , 2014, Bulletin of the American Meteorological Society.

[87]  E. Anagnostou,et al.  Precipitation: Measurement, remote sensing, climatology and modeling , 2009 .

[88]  A. Hou,et al.  The Global Precipitation Measurement Mission , 2014 .