Mixture Kalman filters
暂无分享,去创建一个
[1] R. E. Kalman,et al. A New Approach to Linear Filtering and Prediction Problems , 2002 .
[2] K. Ito,et al. On State Estimation in Switching Environments , 1970 .
[3] A. Jazwinski. Stochastic Processes and Filtering Theory , 1970 .
[4] A.H. Haddad,et al. Applied optimal estimation , 1976, Proceedings of the IEEE.
[5] Hiromitsu Kumamoto,et al. Random sampling approach to state estimation in switching environments , 1977, Autom..
[6] M. Smith,et al. On the detection of target trajectories in a multi target environment , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.
[7] Reuven Y. Rubinstein,et al. Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.
[8] Jitendra K. Tugnait,et al. Detection and estimation for abruptly changing systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.
[9] D. Rubin,et al. The calculation of posterior distributions by data augmentation , 1987 .
[10] Donald B. Rubin,et al. Comment : A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest : The SIR Algorithm , 1987 .
[11] Y. Bar-Shalom. Tracking and data association , 1988 .
[12] Michael A. West. Mixture Models, Monte Carlo, Bayesian Updating and Dynamic Models , 1992 .
[13] Nicholas G. Polson,et al. A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling , 1992 .
[14] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[15] Jun S. Liu,et al. Sequential Imputations and Bayesian Missing Data Problems , 1994 .
[16] N. Shephard. Partial non-Gaussian state space , 1994 .
[17] Jun S. Liu,et al. Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .
[18] R. Kohn,et al. On Gibbs sampling for state space models , 1994 .
[19] D. Avitzour. Stochastic simulation Bayesian approach to multitarget tracking , 1995 .
[20] Petros G. Voulgaris,et al. On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..
[21] Jun S. Liu,et al. Blind Deconvolution via Sequential Imputations , 1995 .
[22] G. Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .
[23] Jun S. Liu,et al. Sequential Monte Carlo methods for dynamic systems , 1997 .
[24] N. G. Best,et al. Dynamic conditional independence models and Markov chain Monte Carlo methods , 1997 .
[25] Simon J. Godsill,et al. On sequential simulation-based methods for Bayesian filtering , 1998 .
[26] Markus Hürzeler,et al. Monte Carlo Approximations for General State-Space Models , 1998 .
[27] G. Peters,et al. Monte Carlo Approximations for General State-Space Models , 1998 .
[28] Jun S. Liu,et al. Rejection Control and Sequential Importance Sampling , 1998 .
[29] Jun S. Liu,et al. Sequential importance sampling for nonparametric Bayes models: The next generation , 1999 .
[30] M. Pitt,et al. Filtering via Simulation: Auxiliary Particle Filters , 1999 .
[31] P. Fearnhead,et al. An improved particle filter for non-linear problems , 1999 .
[32] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[33] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .