Real-time method for the identification and quantification of hydrocarbon pyrolysis products: Part I. Development and validation of the infra red technique

Abstract Due to large heat load encountered in high speed flight (over Mach 5), the regenerative cooling of the engine leads to the study of the endothermic pyrolysis of the onboard hydrocarbon fuel, which acts as a coolant. However the control and regulation of such a technology implies to have a correct knowledge of the endothermic pyrolysis of the onboard hydrocarbon fuel, which motivates the development of a quantitative measuring method adapted to in-flight applications. A Fourier transform infra red spectrometer is used and a specific method has been developed to identify and to quantify the major hydrocarbon products of the pyrolysis. The technique is validated and tested at the outlet of the experimental pyrolysis process which operates under steady-state conditions from 823 K to 1023 K and up to 60 bar. Two mass flow rates (0.05 g s −1 and 0.1 g s −1 ) are studied with titanium reactor to determine the limits of validity and to improve the method. Several synthetic and jet fuels have been tested (heptane, decane, dodecane and two kerosenes). The quantities of five light hydrocarbons (methane, ethane, ethylene, propane, propylene) are determined. The method, based on classical least square processing, is validated with respect to gas chromatograph (and mass spectrometer) analysis notably. A minimum molar fraction of 5 mol.% can be obtained and the accuracy is better than 2 mol.%.

[1]  F. Battin‐Leclerc,et al.  Thermal decomposition of n-dodecane: Experiments and kinetic modeling , 2007 .

[2]  D. Kunzru,et al.  High pressure pyrolysis of n-heptane , 2009 .

[3]  Marc Bouchez,et al.  Fuel reforming for scramjet thermal management and combustion optimization , 2005 .

[4]  S. Eser,et al.  Supercritical-phase thermal decomposition of binary mixtures of jet fuel model compounds , 2000 .

[5]  P. Dagaut,et al.  Detonability of simple and representative components of pyrolysis products of kerosene: pulsed detonation engine application , 2005 .

[6]  Marc Bouchez,et al.  PTAH-SOCAR Fuel-cooled Composite Materials Structure for Dual-Mode Ramjet and Liquid Rocket Engines - 2005 status , 2005 .

[7]  Marc Bouchez,et al.  Characterisation of coking activity during supercritical hydrocarbon pyrolysis , 2008 .

[8]  G. Abraham Etude et développement d'une méthode d'analyse par spectroscopie infrarouge appliquée à la pyrolyse d'hydrocarbures en conditions supercritiques et transitoires , 2009 .

[9]  Nicolas Gascoin,et al.  Etude et Mesure de Paramètres Pertinents Dans Un écoulement Réactif Application Au Refroidissement Par Endo-carburant d'Un Super-statoréacteur , 2006 .

[10]  Ronald S. Fry,et al.  A Century of Ramjet Propulsion Technology Evolution , 2004 .

[11]  F. Langlais,et al.  In-situ analysis of gas phase decomposition and kinetic study during carbon deposition from mixtures of carbon tetrachloride and methane , 1999 .

[12]  Marc Bouchez,et al.  SFGP 2007 - Pyrolysis of Supercritical Endothermic Fuel: Evaluation for Active Cooling Instrumentation , 2008 .

[13]  Kamal K. Pant,et al.  Pyrolysis of n-heptane: kinetics and modeling , 1996 .

[14]  Yongsheng Guo,et al.  Pyrolysis of hydrocarbon fuel ZH-100 under different pressures , 2009 .

[15]  G. Vignoles,et al.  Correlation Between Homogeneous Propane Pyrolysis and Pyrocarbon Deposition , 2001 .

[16]  Earl H. Andrews,et al.  Scramjet Development and Testing in the United States , 2001 .

[17]  Kevin Dahm,et al.  Experimental and modelling investigation of the thermal decomposition of n-dodecane , 2004 .

[18]  I. Sochet,et al.  Thermal degradation of two liquid fuels and detonation tests for pulse detonation engine studies , 2007 .

[19]  E. T. Curran,et al.  Scramjet Engines: The First Forty Years , 2001 .

[20]  Frederick L. Dryer,et al.  Modeling concepts for larger carbon number alkanes: A partially reduced skeletal mechanism for n-decane oxidation and pyrolysis , 2000 .

[21]  Yongsheng Guo,et al.  Effect of triethylamine on the cracking of heptane under a supercritical condition and the kinetic study on the cracking of heptane , 2008 .

[22]  Marc Bouchez,et al.  PTAH-SOCAR Fuel-Cooled Composite Materials Structure for Dual-Mode Ramjet and Liquid Rocket Engines - Status 2006 , 2006 .

[23]  Raghu Sivaramakrishnan,et al.  The high-pressure pyrolysis of saturated and unsaturated C7 hydrocarbons , 2009 .

[24]  Guillermo Rein,et al.  44th AIAA Aerospace Sciences Meeting and Exhibit , 2006 .

[25]  Marc Bouchez,et al.  Real-time method for the identification and quantification of hydrocarbon pyrolysis products: Part II. Application to transient pyrolysis and validation by numerical simulation , 2011 .

[26]  Charles McClinton,et al.  X-43 - Scramjet Power Breaks the Hypersonic Barrier: Dryden Lectureship in Research for 2006 , 2006 .

[27]  J. Vandegans,et al.  Spectrométrie d’absorption atomique , 1997, Spectrométries.

[28]  J. Lecomte Spectroscopie dans l’infrarouge , 1958 .

[30]  Marc Bouchez,et al.  CONTRIBUTION TO SCRAMJET ACTIVE COOLING ANALYSIS USING N-DODECANE DECOMPOSITION MODEL AS A GENERIC ENDOTHERMIC FUEL , 2003 .