Fuzzy complete lattices

In this paper, based on L-fuzzy posets previously introduced by the third author, L-fuzzy complete lattices are defined, which are generalizations of usual complete lattices and coincide with Wagner's complete and cocomplete @W-categories enriched over the frame L, and are consequently a special kind of complete @W-lattices defined by Lai and Zhang. However, Tarski fixed-point theorem for the L-fuzzy complete lattices is proved in a different way from that by Lai and Zhang. Furthermore, some fuzzy powerset operators are suggested, they are not only generalizations of ordinary powerset operators, but also generalizations of L-valued Zadeh powerset operators, and their properties are discussed.

[1]  Andreja Tepavcevic,et al.  L-fuzzy lattices: an introduction , 2001, Fuzzy Sets Syst..

[2]  Ulrich Höhle,et al.  Partial ordering in L-underdeterminate sets , 1985, Inf. Sci..

[3]  Stephen E. Rodabaugh,et al.  Point-set lattice-theoretic topology , 1991 .

[4]  Qi-Ye Zhang,et al.  Continuity in quantitative domains , 2005, Fuzzy Sets Syst..

[5]  R. Flagg,et al.  Quantales and continuity spaces , 1997 .

[6]  J. Goguen L-fuzzy sets , 1967 .

[7]  U. Höhle M-valued Sets and Sheaves over Integral Commutative CL-Monoids , 1992 .

[8]  Stephen E. Rodabaugh,et al.  POWERSET OPERATOR FOUNDATIONS FOR POINT-SET LATTICE-THEORETIC (POSLAT) FUZZY SET THEORIES AND TOPOLOGIES , 1997 .

[9]  Ramón Fuentes-González,et al.  Down and up operators associated to fuzzy relations and t-norms: A definition of fuzzy semi-ideals , 2001, Fuzzy Sets Syst..

[10]  Stephen E. Rodabaugh,et al.  Powerset Operator Foundations For Poslat Fuzzy Set Theories And Topologies , 1999 .

[11]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[12]  H.-J. Hoehnke,et al.  Manes, E. G., Algebraic Theories, Berlin‐Heidelberg‐New York. Springer‐Verlag. 1976. IX, 356 S., DM 55,70. US $ 22.20. (Graduate Texts in Mathematics 26) , 1978 .

[13]  Branimir Seselja,et al.  Fuzzifying Closure Systems and Fuzzy Lattices , 2009, RSFDGrC.

[14]  CATEGORICAL AXIOMS OF NEIGHBORHOOD SYSTEMS , 1997 .

[15]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[16]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[17]  Weixian Xie,et al.  The Dedekind-MacNeille completions for fuzzy posets , 2009, Fuzzy Sets Syst..

[18]  Steven J. Vickers,et al.  Quantales, observational logic and process semantics , 1993, Mathematical Structures in Computer Science.

[19]  Lotfi A. Zadeh,et al.  Quantitative fuzzy semantics , 1971, Inf. Sci..

[20]  Lei Fan,et al.  A New Approach to Quantitative Domain Theory , 2001, MFPS.

[21]  Ralph Kopperman,et al.  Continuity Spaces: Reconciling Domains and Metric Spaces , 1997, Theor. Comput. Sci..

[22]  Dexue Zhang,et al.  Fuzzy preorder and fuzzy topology , 2006, Fuzzy Sets Syst..

[23]  Lotfi A. Zadeh,et al.  Similarity relations and fuzzy orderings , 1971, Inf. Sci..

[24]  P. T. Johnstone,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY (London Mathematical Society Lecture Note Series, 64) , 1983 .

[25]  Kim R. Wagner,et al.  Solving Recursive Domain Equations with Enriched Categories. , 1994 .

[26]  Kim Ritter Wagner,et al.  Liminf Convergence in Omega-Categories , 1997, Theor. Comput. Sci..

[27]  Radim Belohlávek,et al.  Concept lattices and order in fuzzy logic , 2004, Ann. Pure Appl. Log..

[28]  S. Lane Categories for the Working Mathematician , 1971 .

[29]  Marcello M. Bonsangue,et al.  Generalized Metric Spaces: Completion, Topology, and Powerdomains via the Yoneda Embedding , 1995, Theor. Comput. Sci..

[30]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[31]  J. J. M. M. Rutten Weighted colimits and formal balls in generalized metric spaces , 1997 .

[32]  E. Manes Algebraic Theories in a Category , 1976 .

[33]  L. N. Stout Fully Fuzzy Topology , 2003 .

[34]  Dexue Zhang,et al.  Many-valued complete distributivity , 2006 .

[35]  Radim Bělohlávek,et al.  Fuzzy Relational Systems: Foundations and Principles , 2002 .

[36]  Jan J. M. M. Rutten,et al.  Elements of Generalized Ultrametric Domain Theory , 1996, Theor. Comput. Sci..

[37]  S. E. Rodabaugh,et al.  Topological and algebraic structures in fuzzy sets : a handbook of recent developments in the mathematics of fuzzy sets , 2003 .

[38]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[39]  R. Belohlávek Fuzzy Relational Systems: Foundations and Principles , 2002 .

[40]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[41]  Branimir Seselja,et al.  Fuzzy Ordering Relation and Fuzzy Poset , 2007, PReMI.

[42]  Radim Belohlávek,et al.  Lattice-type fuzzy order is uniquely given by its 1-cut: proof and consequences , 2004, Fuzzy Sets Syst..

[43]  U. Höhle On the Fundamentals of Fuzzy Set Theory , 1996 .