The Riemann problem for the Leray–Burgers equation
暂无分享,去创建一个
[1] Jean Leray,et al. Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .
[2] Dispersive regularizations and numerical discretizations for the inviscid Burgers equation , 2007 .
[3] Darryl D. Holm,et al. Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1+1 nonlinear evolutionary pde , 2002, nlin/0203007.
[4] Darryl D. Holm,et al. On asymptotically equivalent shallow water wave equations , 2003, nlin/0307011.
[5] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[6] Darryl D. Holm,et al. Wave Structure and Nonlinear Balances in a Family of Evolutionary PDEs , 2002, SIAM J. Appl. Dyn. Syst..
[7] Razvan C. Fetecau,et al. A Hamiltonian Regularization of the Burgers Equation , 2006, J. Nonlinear Sci..
[8] B. Ørsted. Review: Yvonne Choquet-Bruhat, Cecile de Witt-Morette and Margaret Dillard-Bleick, Analysis, manifolds and physics , 1980 .
[9] Kamran Mohseni,et al. On the Convergence of the Convectively Filtered Burgers Equation to the Entropy Solution of the Inviscid Burgers Equation , 2008, Multiscale Model. Simul..
[10] A. Majda,et al. Vorticity and incompressible flow , 2001 .
[11] Choquet Bruhat,et al. Analysis, Manifolds and Physics , 1977 .
[12] Darryl D. Holm,et al. Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves , 2003 .
[13] Vladimir S. Novikov,et al. Perturbative symmetry approach , 2002, nlin/0203055.
[14] Jing Ping Wang,et al. Prolongation algebras and Hamiltonian operators for peakon equations , 2003 .
[15] Kamran Mohseni,et al. A regularization of the Burgers equation using a filtered convective velocity , 2007, 0806.0400.
[16] Razvan C. Fetecau,et al. Stability of fronts for a regularization of the Burgers equation , 2008 .
[17] R. Camassa. Characteristics and the initial value problem of a completely integrable shallow water equation , 2002 .