Life History Traits of the Stygophilous Amphipod Synurella ambulans in the Hyporheic Zone of the Lower Reaches of the Upper Sava River (Croatia)

Estimating the growth and population dynamics of crustaceans is important for understanding the role of species in ecosystems and for conservation and monitoring purposes. This study investigated temporal and spatial variation in population dynamics (growth rate, instantaneous mortality rates, and longevity) of the stygophilous freshwater amphipod Synurella ambulans (F. Müller, 1846), and influencing environmental factors. Seasonal sampling was conducted from December 2018 to October 2019 at two sampling sites (Jarun and Medsave) along the Sava River in northwestern Croatia. A Bhattacharya cohort analysis was applied to the length-frequency data using the FISAT software package. At least four cohorts were distinguished during the year. The possible influence of environmental factors on growth parameters was investigated using Canonical Correspondence Analysis (CCA), which revealed that the important environmental factors influencing S. ambulans abundance were water temperature and dissolved oxygen concentration. The average total body length (TBL) of females was 4.25 mm, while the TBL of males was 3.34 mm. The asymptotic length (L∞) and growth coefficient (K) were estimated to be 6.30 mm and 0.92 year−1 for females and 5.40 mm and 0.59 year−1 for males, respectively, at the Jarun site. L∞ and K were estimated to be 7.20 mm and 0.34 year−1, respectively, for females and 4.00 mm and 1.20 year−1, respectively, for males at the Medsave site. Estimated total mortality (Z) for each sex had higher values for males than females at both sampling sites. The lack of ecological knowledge on S. ambulans populations and relationships with invertebrate communities in the hyporheic zone of the large river ecosystems emphasises the importance of a detailed study for protecting this species and its vulnerable ecotonal groundwater-connected environment.

[1]  M. Erk,et al.  Energy Status of Stygophilous Amphipod Synurella ambulans as a Promising Biomarker of Environmental Stress in the Hyporheic Zone , 2023, Water.

[2]  R. Tretjakova,et al.  ASSESSMENT BY MACROINVERTEBRATES OF THE ECOLOGICAL QUALITY OF SHALLOW LAKE WITH RICH SAPROPEL SEDIMENTS , 2023, ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference.

[3]  D. Galassi,et al.  Life-History Traits and Acclimation Ability of a Copepod Species from the Dripping Waters of the Corchia Cave (Apuan Alps, Tuscany, Italy) , 2023, Water.

[4]  M. Erk,et al.  Metal bioaccumulation in stygophilous amphipod Synurella ambulans in the hyporheic zone: The influence of environmental factors. , 2023, The Science of the total environment.

[5]  È. Í. Ìàðèí,et al.  Lifestyle switching and refugee availability are the main factors in the evolution and distribution of the genus Synurella Wrześniowski, 1877 (Amphipoda: Crangonyctidae)  , 2022, Arthropoda Selecta.

[6]  D. Behringer,et al.  A reflex action mortality predictor (RAMP) for commercially fished blue crab Callinectes sapidus in Florida , 2022, Fisheries Research.

[7]  Chen Zhao,et al.  Influence of environmental variables on macroinvertebrate community structure in Lianhuan Lake , 2021, Ecology and evolution.

[8]  J. Negishi,et al.  Additive Effects of Sediment and Nutrient on Leaf Litter Decomposition and Macroinvertebrates in Hyporheic Zone , 2021, Water.

[9]  D. Vafidis,et al.  Population Dynamics, Fishery, and Exploitation Status of Norway Lobster (Nephrops norvegicus) in Eastern Mediterranean , 2021, Water.

[10]  B. Sures,et al.  The Ecological Importance of Amphipod–Parasite Associations for Aquatic Ecosystems , 2020, Water.

[11]  P. Failler,et al.  Population parameters of Oreochromis niloticus (L) from a semi-open lagoon (Sakumo II), Ghana and its implications on management , 2020 .

[12]  D. Setyohadi,et al.  Biology and population dynamics analysis of fringescale sardine (Sardinella fimbriata) in Bali Strait waters, Indonesia , 2019, IOP Conference Series: Earth and Environmental Science.

[13]  A. Gontcharov,et al.  Adrift across tectonic plates: molecular phylogenetics supports the ancient Laurasian origin of old limnic crangonyctid amphipods , 2019, Organisms Diversity & Evolution.

[14]  G. Winkler,et al.  Life cycle, growth and reproduction of Neomysis americana in the St. Lawrence estuarine transition zone , 2018, Journal of Plankton Research.

[15]  Marc H. Taylor,et al.  Assessing sources of uncertainty in length-based estimates of body growth in populations of fishes and macroinvertebrates with bootstrapped ELEFAN , 2018, Ecological Modelling.

[16]  Mark John Costello,et al.  Progress in the discovery of amphipod crustaceans , 2018, PeerJ.

[17]  Murat Özbek An overview on the distribution of Synurella genus in Turkey (Crustacea:Amphipoda) , 2018, Ege Journal of Fisheries and Aquatic Sciences.

[18]  R. Schwamborn How reliable are the Powell–Wetherall plot method and the maximum-length approach? Implications for length-based studies of growth and mortality , 2018, Reviews in Fish Biology and Fisheries.

[19]  I. Ciglenečki,et al.  Dissolved organic carbon as potential indicator of global change: A long-term investigation in the northern Adriatic. , 2017, The Science of the total environment.

[20]  R. Kilada,et al.  Age determination in crustaceans: a review , 2017, Hydrobiologia.

[21]  A. Fransozo,et al.  Population structure, mortality, and recruitment of Macrobrachium amazonicum (Heller, 1862) (Caridea: Palaemonidae) in the eastern Amazon region, Brazil , 2017 .

[22]  D. Copilaș‐Ciocianu,et al.  Contrasting life history strategies in a phylogenetically diverse community of freshwater amphipods (Crustacea: Malacostraca). , 2016, Zoology.

[23]  L. Pârvulescu,et al.  Zoogeography of epigean freshwater Amphipoda (Crustacea) in Romania: fragmented distributions and wide altitudinal variability. , 2014, Zootaxa.

[24]  J. Jokela,et al.  Diversity and Distribution of Freshwater Amphipod Species in Switzerland (Crustacea: Amphipoda) , 2014, PloS one.

[25]  B. Šket,et al.  Recent Fauna of the Cave Križna jama in Slovenia , 2014 .

[26]  J. F. Lima,et al.  Reproductive aspects of Macrobrachium amazonicum (Decapoda: Palaemonidae) in the State of Amapá, Amazon River mouth , 2014 .

[27]  M. Grabowski,et al.  Reproductive traits and conservation needs of the endemic gammarid Laurogammarus scutarensis ( Schäferna, 1922) from the Skadar Lake system, Balkan Peninsula , 2014 .

[28]  M. Zagmajster,et al.  Coevolution of life history traits and morphology in female subterranean amphipods , 2013 .

[29]  RochetteRémy,et al.  Direct determination of age in shrimps, crabs, and lobsters , 2012 .

[30]  D. Sídorov,et al.  Taxonomy of the spring dwelling amphipod Synurella ambulans (Crustacea: Crangonyctidae) in West Russia: with notes on its distribution and ecology , 2012 .

[31]  G. Vogt Ageing and longevity in the Decapoda (Crustacea): A review , 2012 .

[32]  Yong Chen,et al.  Modelling the growth of crustacean species , 2012, Reviews in Fish Biology and Fisheries.

[33]  K. Žganec,et al.  Life History Traits of the Endangered Endemic Amphipod Echinogammarus cari (Crustacea, Gammaridae) from the Dinaric Karst , 2011 .

[34]  Sara A. Lombardi,et al.  Ecological effects on metabolic scaling: amphipod responses to fish predators in freshwater springs , 2011 .

[35]  P. Wood,et al.  Spatial variability in the hyporheic zone refugium of temporary streams , 2011, Aquatic Sciences.

[36]  L. Cubillos,et al.  Inter-cohort growth rate changes of common sardine (Strangomera bentincki) and their relationship with environmental conditions off central southern Chile , 2010 .

[37]  L. Bach,et al.  The amphipod Orchomenella pinguis--a potential bioindicator for contamination in the Arctic. , 2009, Marine pollution bulletin.

[38]  M. Grabowski,et al.  Reproductive biology of Dikerogammarus haemobaphes: an invasive gammarid (Crustacea: Amphipoda) colonizing running waters in Central Europe , 2009, Biological Invasions.

[39]  J. Bujang,et al.  Population structure, growth, mortality and yield per recruit of segestid shrimp, Acetes japonicus (Decapoda: Sergestidae) from the coastal waters of Malacca, Peninsular Malaysia , 2009 .

[40]  C. Fišer,et al.  Coexistence of species of two amphipod genera: Niphargus timavi (Niphargidae) and Gammarus fossarum (Gammaridae) , 2007 .

[41]  R. S. Cardoso,et al.  Population Biology and Secondary Production of Excirolana braziliensis (Isopoda: Cirolanidae) in Two Sandy Beaches of Southeastern Brazil , 2006 .

[42]  S. Devin,et al.  Growth-related life-history traits of an invasive gammarid species: evaluation with a Laird–Gompertz model , 2003 .

[43]  H. Sudo Effect of temperature on growth, sexual maturity and reproduction of Acanthomysis robusta (Crustacea: Mysidacea) reared in the laboratory , 2003 .

[44]  J. Marques,et al.  The influence of temperature and salinity on the duration of embryonic development, fecundity and growth of the amphipod Echinogammarus marinus Leach (Gammaridae) , 2003 .

[45]  N. Matočec,et al.  An overview of the cave and interstitial biota of Croatia , 2002 .

[46]  K. Carroll,et al.  Population responses of the freshwater amphipod Gammarus pulex (L.) to an environmental estrogen, 17α‐ethinylestradiol , 2002, Environmental toxicology and chemistry.

[47]  Evgeny V Dafner,et al.  A brief overview of modern directions in marine DOC studies part I.--Methodological aspects. , 2002, Journal of environmental monitoring : JEM.

[48]  T. Brey,et al.  Occurrence of the autofluorescent pigment, lipofuscin, in polar crustaceans and its potential as an age marker , 2001, Polar Biology.

[49]  T. Brey,et al.  The autofluorescent age pigment lipofuscin: key to age, growth and productivity of the Antarctic amphipod Waldeckia obesa (Chevreux, 1905). , 2001, Journal of experimental marine biology and ecology.

[50]  R. Hartnoll Growth in Crustacea – twenty years on , 2001, Hydrobiologia.

[51]  R. Vonk,et al.  INGOLFIELLA BEATRICIS, NEW SPECIES (AMPHIPODA: INGOLFIELLIDAE) FROM SUBTERRANEAN WATERS OF SLOVENIA , 2001 .

[52]  D. Lercari,et al.  Testing the swash exclusion hypothesis in sandy beach populations: the mole crab Emerita brasiliensis in Uruguay , 2001 .

[53]  M. Cunha,et al.  The amphipod Corophium multisetosum (Corophiidae) in Ria de Aveiro (NW Portugal). I. Life history and aspects of reproductive biology , 2000 .

[54]  Steven N. Austad,et al.  Why do we age? , 2000, Nature.

[55]  M. Poltermann Growth, production and productivity of the Arctic sympagic amphipod Gammarus wilkitzkii , 2000 .

[56]  P. Shelton,et al.  New perspectives on the growth and longevity of the European lobster (Homarus gammarus) , 1999 .

[57]  D. Lercari,et al.  Effects of Freshwater Discharge in Sandy Beach Populations: The Mole Crab Emerita brasiliensis in Uruguay , 1999 .

[58]  C. Garrity,et al.  Pelagic occurrence of the sympagic amphipod Gammarus wilkitzkii in ice-free waters of the Greenland Sea – dead end or part of life-cycle? , 1999, Polar Biology.

[59]  O. Defeo,et al.  Life history of the sandhopper Pseudorchestoidea brasiliensis (Amphipoda) in sandy beaches with contrasting morphodynamics , 1999 .

[60]  K. Henry,et al.  Oxygen dependent habitat selection in surface and hyporheic environments by Gammarus roeseli Gervais (Crustacea, Amphipoda): experimental evidence , 1998, Hydrobiologia.

[61]  L. Etim,et al.  Growth and mortality, recruitment and yield of the fresh-water shrimp, Macrobrachium völlenhovenii, Herklots 1851 (Crustacea, Palaemonidae) in the Fahe reservoir, Côte d'Ivoire, West Africa , 1998 .

[62]  J. Spicer Is the reduced metabolism of hypogean amphipods solely a result of food limitation? , 1998, Hydrobiologia.

[63]  L. Edsman,et al.  Estimating age and growth in long-lived temperate freshwater crayfish using lipofuscin , 1998 .

[64]  O. Defeo,et al.  Is Sandy Beach Macrofauna Only Physically Controlled? Role of Substrate and Competition in Isopods , 1997 .

[65]  F. Sardà,et al.  Nephrops norvegicus population and morphometrical characteristics in relation to substrate heterogeneity , 1997 .

[66]  R. J. A. Atkinson,et al.  Population biology of the Norway lobster, Nephrops norvegicus (L.) in the Firth of Clyde, Scotland - I: Growth and density , 1997 .

[67]  F. Hervant,et al.  Locomotory, ventilatory and metabolic responses of the subterranean Stenasellus virei (Crustacea, Isopoda) to severe hypoxia and subsequent recovery. , 1997, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[68]  O. Tully,et al.  Lipofuscin (age pigment) as an index of crustacean age: correlation with age, temperature and body size in cultured juvenile Homarus gammarus L. , 1996 .

[69]  R. S. Cardoso,et al.  Population biology and secondary production of the sandhopper Pseudorchestoidea brasiliensis (Amphipoda: Talitridae) at Prainha Beach, Brazil , 1996 .

[70]  O. Tully,et al.  Lipofuscin as an indicator of age in crustaceans: analysis of the pigment in the American lobster Homarus americanus , 1996 .

[71]  U. Enin,et al.  Population dynamics of the estuarine prawn (Nematopalaemon hastatus Aurivillius 1898) off the southeast coast of Nigeria , 1996 .

[72]  J. Dugan,et al.  Geographic variation in life history of the sand crab, Emerita analoga (Stimpson) on the California coast: Relationships to environmental variables , 1994 .

[73]  M. Burt,et al.  Effect of acute pH depression on the survival of the freshwater amphipod Hyalella azteca at variable temperatures: field and laboratory studies , 1993, Hydrobiologia.

[74]  K. Coyle,et al.  Amphipod Life Histories: Community Structure, Impact of Temperature on Decoupled Growth and Maturation Rates, Productivity, and P:B Ratios , 1991 .

[75]  O. Defeo,et al.  Distributional pattern and population dynamics of Excirolana armata (Isopoda: Cirolanidae) in a Uruguayan sandy beach , 1991 .

[76]  B. Sainte‐Marie A review of the reproductive bionomics of aquatic gammaridean amphipods: variation of life history traits with latitude, depth, salinity and superfamily , 1991, Hydrobiologia.

[77]  P. J. Morgan,et al.  Use made in marine ecology of methods for estimating demographic parameters from size/frequency data , 1987 .

[78]  C. Braak Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis , 1986 .

[79]  D. Pauly On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks , 1980 .

[80]  K. Anger,et al.  Life cycle ofCorophium insidiosum (Crustacea, Amphipoda) in laboratory culture , 1979, Helgoländer wissenschaftliche Meeresuntersuchungen.

[81]  W. G. Sprules THE LIFE CYCLE OF CRANGONYX RICHMONDENSIS LAURENTIANUS BOUSFIELD (CRUSTACEA: AMPHIPODA) , 1967 .

[82]  E. Borutzky VII.—On the occurrence of the Amphipod Synurella ambulans in Russia , 1927 .

[83]  P. Anastácio,et al.  Population dynamics and expansion of Crangonyx pseudogracilis, a potentially invasive amphipod , 2021, Knowledge & Management of Aquatic Ecosystems.

[84]  M. Zagmajster,et al.  Interstitial fauna of the Sava River in Eastern Slovenia , 2019, Natura Sloveniae.

[85]  O. Marenkov,et al.  Fishery and environmental situation assessment of water bodies in the Dnipropetrovsk region of Ukraine , 2018 .

[86]  Anamarija Kolda,et al.  Microbial mats as shelter microhabitat for amphipods in an intermittent karstic spring , 2018 .

[87]  A. Soares-Gomes,et al.  Population dynamics and secondary production of a key benthic tanaidacean, Monokalliapseudes schubarti (Mañé-Garzón, 1949) (Tanaidacea, Kalliapseudidae), from a tropical coastal lagoon in southeastern Brazil , 2017 .

[88]  I. Winfield,et al.  A population study of the amphipod Nototropis minikoi (Gammaridea, Atylidae) in the Sian Ka’an Biosphere Reserve, Quintana Roo, Mexico , 2017 .

[89]  D. B. Fonseca,et al.  Occurrence and quantification of the autofluorescent pigment neurolipofuscin in the brains of red shrimp Pleoticus muelleri (Bate, 1888) (Decapoda: Solenoceridae) , 2017 .

[90]  S. Rodrigues,et al.  Population dynamics of a freshwater amphipod from South America (Crustacea, Amphipoda, Hyalellidae) , 2016 .

[91]  M. L. Fidalgo,et al.  Population structure and dynamics of the freshwater shrimp Atyaephyra desmarestii(Millet, 1831) in the lower River Minho (NW Portugal) , 2015 .

[92]  Gerd Mayer,et al.  Mouthpart morphology of Synurella ambulans (F. Muller, 1846) (Amphipoda, Crangonyctidae) , 2015 .

[93]  D. Komatina,et al.  Transboundary Water Cooperation for Sustainable Development of the Sava River Basin , 2015 .

[94]  Micha,et al.  Species inventory and distribution patterns of freshwater amphipods in Moldova , 2014 .

[95]  G. Durn,et al.  Conceptual model for groundwater status and risk assessment - case study of the Zagreb aquifer system , 2013 .

[96]  R. Caldwell,et al.  Fluorescence in Arthropoda Informs Ecological Studies in Anchialine Crustaceans, Remipedia, and Atyidae , 2013 .

[97]  L. Pârvulescu,et al.  FAUNISTIC OVERVIEW UPON THE AQUATIC MALACOSTRACANS (CRUSTACEA, MALACOSTRACA) OF CEFA NATURE PARK (CRI ŞANA, ROMANIA) , 2012 .

[98]  Sabrina Lo Brutto,et al.  Growth parameters and population structure of Aristeus antennatus (DECAPODA, PENAEIDAE) in the south Tyrrhenian Sea (SOUTHERN COAST OF ITALY). , 2011 .

[99]  P. Goethals,et al.  First record of Synurella ambulans (Müller 1846) (Amphipoda: Crangonictidae) in Belgium , 2010 .

[100]  N. Berezina First record of the invasive species Dikerogammarus villosus (Crustacea: Amphipoda) in the Vltava River (Czech Republic) , 2008 .

[101]  K. Arbačiauskas Synurella ambulans (F. Müller, 1846), A New Native Amphipod Species of Lithuanian Waters , 2008 .

[102]  B. Šket,et al.  Global diversity of amphipods (Amphipoda; Crustacea) in freshwater , 2007, Hydrobiologia.

[103]  D. Culver,et al.  Hypotelminorheic—A Unique Freshwater Habitat , 2006 .

[104]  D. McLusky,et al.  Estimation of Population Parameters and Stock Assessment of Penaeus indicus (H. Milne Edwards) in the Western Coastal Waters of Sri Lanka , 2006 .

[105]  R. Beverton,et al.  Growth, maturation, and longevity of maturation cohorts of Norwegian spring-spawning herring , 2004 .

[106]  R. S. Cardoso,et al.  Life History of Emerita Brasiliensis (Decapoda: Hippidae) on Two Beaches With Different Morphodynamic Characteristics , 2003 .

[107]  B. Yannicelli,et al.  Activity rhythms of two cirolanid isopods from an exposed microtidal sandy beach in Uruguay , 2001 .

[108]  Magdalena Błażewicz-Paszkowycz,et al.  Life history of Synurella ambulans [F.Muller, 1846] [Amphipoda, Crangonyctidae] from Central Poland , 2000 .

[109]  R. S. Cardoso,et al.  GROWTH, MORTALITY, AND REPRODUCTION OF EXCIROLANA BRAZILIENSIS RICHARDSON, 1912 (ISOPODA, CIROLANIDAE) ON THE PRAINHA BEACH, RIO DE JANEIRO, BRAZIL , 2000 .

[110]  R. S. Cardoso,et al.  Population Biology of the Mole Crab Emerita Brasiliensis (Decapoda: Hippidae) at Fora Beach, Brazil , 1999 .

[111]  J. Marques,et al.  DISTRIBUTION, POPULATION DYNAMICS, AND PRODUCTION OF , 1999 .

[112]  T. Brey,et al.  Interactions of growth and mortality in benthic invertebrate populations: Empirical evidence for a mortality-growth continuum , 1997 .

[113]  K. Jażdżewski,et al.  Ecotypes of Amphipoda in Central European inland waters , 1995 .

[114]  I. Muskó Occurrence of Amphipoda in Hungary Since 18531) , 1994 .

[115]  F. Arreguín-Sánchez,et al.  Growth study of the yellow clam Mesodesma mactroides: a comparative analysis of three length-based methods , 1992 .

[116]  A. Konopacka,et al.  Uwagi na temat wystepowania skorupiaka Synurella ambulans [Mull.] [Amphipoda, Crangonyctidae] w Polsce , 1992 .

[117]  C. P. Mathews,et al.  The relationship between maximum and asymptotic length in fishes , 1990 .

[118]  D. Pauly Length-converted catch curves and the seasonal growth of fishes , 1990 .

[119]  C G Bhattacharya,et al.  A simple method of resolution of a distribution into gaussian components. , 1967, Biometrics.

[120]  L. Seidlein,et al.  A quantitative theory of organic growth (Inquitiesom growth laws II) , 1938 .