The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast

[1]  J. Soll,et al.  Molecular chaperones are present in the thylakoid lumen of pea chloroplasts , 1996, FEBS letters.

[2]  D. Gallie,et al.  ATP-dependent Hexameric Assembly of the Heat Shock Protein Hsp101 Involves Multiple Interaction Domains and a Functional C-proximal Nucleotide-binding Domain* , 2002, The Journal of Biological Chemistry.

[3]  Jason C. Young,et al.  Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system , 2003, The EMBO journal.

[4]  Jason C. Young,et al.  Hsp90: a specialized but essential protein-folding tool. , 2001, The Journal of cell biology.

[5]  E. Basha,et al.  Structure and assembly of a eukaryotic small heat shock protein. , 2001 .

[6]  S. Lindquist,et al.  Hsp104, Hsp70, and Hsp40 A Novel Chaperone System that Rescues Previously Aggregated Proteins , 1998, Cell.

[7]  Bernd Bukau,et al.  Substrate specificity of the DnaK chaperone determined by screening cellulose‐bound peptide libraries , 1997, The EMBO journal.

[8]  J. Vandekerckhove,et al.  Purification and Characterization of Chaperonin 60 and Heat-Shock Protein 70 from Chromoplasts of Narcissus pseudonarcissus (Involvement of Heat-Shock Protein 70 in a Soluble Protein Complex Containing Phytoene Desaturase) , 1996, Plant physiology.

[9]  Chrisostomos Prodromou,et al.  Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. , 2003, Molecular cell.

[10]  I. Ohad,et al.  Evidence for protection by heat‐shock proteins against photoinhibition during heat‐shock , 1988, The EMBO journal.

[11]  Bernd Bukau,et al.  The Hsp70 and Hsp60 Chaperone Machines , 1998, Cell.

[12]  A. Melis,et al.  Photosystem II damage and repair cycle in the green alga Dunaliella salina: involvement of a chloroplast-localized HSP70. , 2001, Plant & cell physiology.

[13]  P. Schreier,et al.  The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  A. Clarke,et al.  Plant mitochondria contain proteolytic and regulatory subunits of the ATP-dependent Clp protease , 2001, Plant Molecular Biology.

[15]  C. Guy,et al.  Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. , 2001, Plant physiology.

[16]  M. Schroda,et al.  The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. , 2000, The Plant journal : for cell and molecular biology.

[17]  G. Friso,et al.  Proteomics of the Chloroplast: Systematic Identification and Targeting Analysis of Lumenal and Peripheral Thylakoid Proteins , 2000, Plant Cell.

[18]  E. Vierling,et al.  Molecular chaperones and protein folding in plants , 1996, Plant Molecular Biology.

[19]  J. Langdale,et al.  BUNDLE SHEATH DEFECTIVE2, a Novel Protein Required for Post-Translational Regulation of the rbcL Gene of Maize , 1999, Plant Cell.

[20]  Jason C. Young,et al.  More than folding: localized functions of cytosolic chaperones. , 2003, Trends in biochemical sciences.

[21]  C. Wu,et al.  Identification of chloroplast envelope proteins in close physical proximity to a partially translocated chimeric precursor protein. , 1994, The Journal of biological chemistry.

[22]  Matthias Schmidt,et al.  Characterization of a plastid-specific HSP90 homologue: identification of a cDNA sequence, phylogenetic descendence and analysis of its mRNA and protein expression , 1996, Plant Molecular Biology.

[23]  A. Jagendorf,et al.  Chloroplast molecular chaperone-assisted refolding and reconstitution of an active multisubunit coupling factor CF1 core. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[24]  L. Kourtz,et al.  The Early Stage of Chloroplast Protein Import Involves Com70* , 1997, The Journal of Biological Chemistry.

[25]  M. Schroda,et al.  Light-inducible geneHSP70B encodes a chloroplast-localized heat shock protein inChlamydomonas reinhardtii , 1996, Plant Molecular Biology.

[26]  Y. Nakamura,et al.  A large scale structural analysis of cDNAs in a unicellular green alga, Chlamydomonas reinhardtii. I. Generation of 3433 non-redundant expressed sequence tags. , 1999, DNA research : an international journal for rapid publication of reports on genes and genomes.

[27]  Y. Nakamura,et al.  Generation of expressed sequence tags from low-CO2 and high-CO2 adapted cells of Chlamydomonas reinhardtii. , 2000, DNA research : an international journal for rapid publication of reports on genes and genomes.

[28]  K. Shinozaki,et al.  Chloroplast and mitochondrial proteases in Arabidopsis. A proposed nomenclature. , 2001, Plant physiology.

[29]  A. Clarke,et al.  Characterization of Chloroplast Clp proteins in Arabidopsis: Localization, tissue specificity and stress responses. , 2002, Physiologia plantarum.

[30]  B. Bukau,et al.  Refolding of Substrates Bound to Small Hsps Relies on a Disaggregation Reaction Mediated Most Efficiently by ClpB/DnaK* , 2003, Journal of Biological Chemistry.

[31]  J. Buchner,et al.  Functional Characterization of the Higher Plant Chloroplast Chaperonins (*) , 1995, The Journal of Biological Chemistry.

[32]  S. Lindquist,et al.  Hsp90 as a capacitor of phenotypic variation , 2002, Nature.

[33]  A. Zvi,et al.  Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Mahmoudkhani,et al.  Structure of , 1999, Acta crystallographica. Section B, Structural science.

[35]  Garrett J. Lee,et al.  Evolution, structure and function of the small heat shock proteins in plants , 1996 .

[36]  Y. Eisenberg-Domovich,et al.  Reversible membrane association of heat-shock protein 22 in Chlamydomonas reinhardtii during heat shock and recovery. , 1994, European journal of biochemistry.

[37]  J. Froehlich,et al.  ARC6 Is a J-Domain Plastid Division Protein and an Evolutionary Descendant of the Cyanobacterial Cell Division Protein Ftn2 Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.013292. , 2003, The Plant Cell Online.

[38]  F. Wollman,et al.  A role for molecular chaperones in assembly and repair of photosystem II , 2001 .

[39]  C. Georgopoulos,et al.  Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[40]  P. Hegemann,et al.  A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. , 2001, Gene.

[41]  A. Horwich,et al.  The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex , 1997, Nature.

[42]  E. Vierling,et al.  The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins) , 2001, Cell stress & chaperones.

[43]  Christine Slingsby,et al.  Crystal structure and assembly of a eukaryotic small heat shock protein , 2001, Nature Structural Biology.

[44]  P. Hegemann,et al.  A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. , 1999, The Plant journal : for cell and molecular biology.

[45]  E. Vierling,et al.  Chloroplast small heat shock proteins: evidence for atypical evolution of an organelle-localized protein. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[46]  F. Wollman,et al.  Possible role for molecular chaperones in assembly and repair of photosystem II. , 2001, Biochemical Society transactions.

[47]  P. Viitanen,et al.  Identification, characterization, and DNA sequence of a functional "double" groES-like chaperonin from chloroplasts of higher plants. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[48]  I. Horváth,et al.  Small heat-shock proteins regulate membrane lipid polymorphism , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[49]  M. Schroda,et al.  Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. , 2002, The Plant journal : for cell and molecular biology.

[50]  D. Schnell Shedding light on the chloroplast protein import machinery , 1995, Cell.

[51]  M. Delseny,et al.  Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana , 2001, Cell stress & chaperones.

[52]  M. Nishimura,et al.  Interaction of homologues of Hsp70 and Cpn60 with ferredoxin‐NADP+ reductase upon its import into chloroplasts , 1993, FEBS letters.

[53]  J. Miernyk Protein folding in the plant cell. , 1999, Plant physiology.

[54]  J. Froehlich,et al.  The chlorate-resistant and photomorphogenesis-defective mutant cr88 encodes a chloroplast-targeted HSP90. , 2003, The Plant journal : for cell and molecular biology.

[55]  K. Flaherty,et al.  Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein , 1990, Nature.

[56]  Wah Chiu,et al.  The Structure of ClpB A Molecular Chaperone that Rescues Proteins from an Aggregated State , 2003, Cell.

[57]  K. Keegstra,et al.  Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone , 1997, The EMBO journal.

[58]  J. Miernyk The J-domain proteins of Arabidopsis thaliana: an unexpectedly large and diverse family of chaperones , 2001, Cell stress & chaperones.

[59]  G. von Heijne,et al.  Chloroplast transit peptides from the green alga Chlamydomonas reinhardtii share features with both mitochondrial and higher plant chloroplast presequences , 1990, FEBS letters.

[60]  J. Jo,et al.  Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. , 2000, Gene.

[61]  E. Vierling,et al.  A 21-kDa chloroplast heat shock protein assembles into high molecular weight complexes in vivo and in Organelle. , 1994, The Journal of biological chemistry.

[62]  J. Buchner,et al.  Hsp90: Chaperoning signal transduction , 2001, Journal of cellular physiology.

[63]  F. Tjerneld,et al.  The chaperone-like activity of a small heat shock protein is lost after sulfoxidation of conserved methionines in a surface-exposed amphipathic alpha-helix. , 2001, Biochimica et biophysica acta.

[64]  P. Hegemann,et al.  The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. , 2001, Journal of cell science.

[65]  F. Hartl,et al.  Molecular Chaperones in the Cytosol: from Nascent Chain to Folded Protein , 2002, Science.

[66]  Peter Roepstorff,et al.  Central Functions of the Lumenal and Peripheral Thylakoid Proteome of Arabidopsis Determined by Experimentation and Genome-Wide Prediction Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010304. , 2002, The Plant Cell Online.

[67]  J. Frydman Folding of newly translated proteins in vivo: the role of molecular chaperones. , 2001, Annual review of biochemistry.

[68]  Garrett J. Lee,et al.  A small heat shock protein stably binds heat‐denatured model substrates and can maintain a substrate in a folding‐competent state , 1997, The EMBO journal.

[69]  M. Nishimura,et al.  Chloroplasts Have a Novel Cpn10 in Addition to Cpn20 as Co-chaperonins in Arabidopsis thaliana * , 2001, The Journal of Biological Chemistry.

[70]  L. Pearl,et al.  Identification and Structural Characterization of the ATP/ADP-Binding Site in the Hsp90 Molecular Chaperone , 1997, Cell.

[71]  G. Lorimer,et al.  Reconstitution of Higher Plant Chloroplast Chaperonin 60 Tetradecamers Active in Protein Folding* , 2000, The Journal of Biological Chemistry.

[72]  M. Agarwal,et al.  Arabidopsis thaliana Hsp100 proteins: kith and kin , 2001, Cell stress & chaperones.

[73]  W. Plaxton,et al.  Isolation and characterization of a cDNA clone encoding a cognate 70-kDa heat shock protein of the chloroplast envelope. , 1992, The Journal of biological chemistry.

[74]  Chi-Lien Cheng,et al.  Genetic Interactions between the Chlorate-Resistant Mutant cr88 and the Photomorphogenic Mutants cop1 and hy5 , 2000, Plant Cell.

[75]  F. Narberhaus α-Crystallin-Type Heat Shock Proteins: Socializing Minichaperones in the Context of a Multichaperone Network , 2002, Microbiology and Molecular Biology Reviews.

[76]  H. Owen,et al.  HSP16.6 Is Involved in the Development of Thermotolerance and Thylakoid Stability in the Unicellular Cyanobacterium, Synechocystis sp. PCC 6803 , 2000, Current Microbiology.

[77]  J. Rochaix Chlamydomonas reinhardtii as the photosynthetic yeast. , 1995, Annual review of genetics.

[78]  J Kuriyan,et al.  Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. , 1997, Science.

[79]  S. Lindquist,et al.  HSP100/Clp proteins: a common mechanism explains diverse functions. , 1996, Trends in biochemical sciences.

[80]  Craig M. Ogata,et al.  Structural Analysis of Substrate Binding by the Molecular Chaperone DnaK , 1996, Science.

[81]  S. Brunak,et al.  Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. , 2000, Journal of molecular biology.

[82]  I. Ohad,et al.  The nuclear-coded chloroplast 22-kDa heat-shock protein of Chlamydomonas. Evidence for translocation into the organelle without a processing step. , 1989, European journal of biochemistry.

[83]  J. Napier,et al.  Newly Imported Rieske Iron-Sulfur Protein Associates with Both Cpn60 and Hsp70 in the Chloroplast Stroma. , 1993, The Plant cell.

[84]  J. Whitelegge,et al.  The chloroplastic GrpE homolog of Chlamydomonas: two isoforms generated by differential splicing. , 2001, The Plant cell.

[85]  N. Brot,et al.  Hsp70 proteins, similar to Escherichia coli DnaK, in chloroplasts and mitochondria of Euglena gracilis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[86]  L. Fritz,et al.  A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors , 2003, Nature.

[87]  V. Lumbreras,et al.  Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron , 1998 .

[88]  Sung-Hou Kim,et al.  Crystal structure of a small heat-shock protein , 1998, Nature.

[89]  F. Schmid,et al.  The hsp70 chaperone DnaK is a secondary amide peptide bond cis-trans isomerase , 2002, Nature Structural Biology.

[90]  Y. Lin,et al.  A chlorate-resistant mutant defective in the regulation of nitrate reductase gene expression in Arabidopsis defines a new HY locus. , 1997, The Plant cell.

[91]  K. Keegstra,et al.  Identification of heat shock protein hsp70 homologues in chloroplasts. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[92]  E. Vierling,et al.  Expression of a Conserved Family of Cytoplasmic Low Molecular Weight Heat Shock Proteins during Heat Stress and Recovery. , 1991, Plant physiology.

[93]  T. Takao,et al.  Chloroplast Cpn20 forms a tetrameric structure in Arabidopsis thaliana. , 1999, The Plant journal : for cell and molecular biology.

[94]  T. Leustek,et al.  Characteristics of an Hsp70 Homolog Localized in Higher Plant Chloroplasts That Is Similar to DnaK, the Hsp70 of Prokaryotes , 1993, Plant physiology.

[95]  C. Beck,et al.  Three light-inducible heat shock genes of Chlamydomonas reinhardtii , 1989, Molecular and cellular biology.

[96]  S. Lindquist,et al.  Hsp90 as a capacitor for morphological evolution , 1998, Nature.

[97]  M. Schroda,et al.  Light-inducible gene HSP70B encodes a chloroplast-localized heat shock protein in Chlamydomonas reinhardtii. , 1996, Plant molecular biology.

[98]  W. Miller,et al.  The Chlamydomonas reinhardtii Plastid Chromosome: Islands of Genes in a Sea of Repeats , 2002 .

[99]  V. Emelyanov Phylogenetic relationships of organellar Hsp90 homologs reveal fundamental differences to organellar Hsp70 and Hsp60 evolution. , 2002, Gene.

[100]  J. Gray,et al.  A novel plastid-targeted J-domain protein in Arabidopsis thaliana , 2001, Plant Molecular Biology.

[101]  G. Gloor,et al.  The Hsp90 family of proteins in Arabidopsis thaliana , 2001, Cell stress & chaperones.

[102]  S. Lindquist,et al.  An Arabidopsis heat shock protein complements a thermotolerance defect in yeast. , 1994, The Plant cell.

[103]  J. Vandekerckhove,et al.  Purification and characterization of chaperonin 60 and heat-shock protein 70 from chromoplasts of Narcissus pseudonarcissus. , 1996, Plant physiology.

[104]  Jeff Shrager,et al.  Chlamydomonas reinhardtii Genome Project. A Guide to the Generation and Use of the cDNA Information1 , 2003, Plant Physiology.

[105]  F. Wollman,et al.  A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. , 1999, The Plant cell.

[106]  K. Shirasu,et al.  HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[107]  S. Hemmingsen,et al.  Arabidopsis thaliana type I and II chaperonins , 2001, Cell stress & chaperones.

[108]  G. Igloi,et al.  Structure of a gene encoding heat-shock protein HSP70 from the unicellular alga Chlamydomonas reinhardtii. , 1992, Gene.

[109]  G. Blobel,et al.  Isolation of components of the chloroplast protein import machinery. , 1994, Science.

[110]  J. Rochaix,et al.  The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii , 2001, Molecular Genetics and Genomics.

[111]  C. Paavola,et al.  Chlamydomonas transcripts encoding three divergent plastid chaperonins are heat-inducible , 1995, Plant Molecular Biology.