Universal Quantum Computation with a Non-Abelian Topological Memory

An explicit lattice realization of a non-Abelian topological memory is presented. The correspondence between logical and physical states is seen directly by use of the stabilizer formalism. The resilience of the encoded states against errors is studied and compared to that of other memories. A set of non-topological operations are proposed to manipulate the encoded states, resulting in universal quantum computation. This work provides insight into the non-local encoding non-Abelian anyons provide at the microscopical level, with an operational characterization of the memories they provide.

[1]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[2]  Jiannis K. Pachos,et al.  Engineering complex topological memories from simple Abelian models , 2009, 0908.0708.

[3]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[4]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[5]  Carlos Mochon Anyon computers with smaller groups , 2004 .

[6]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[7]  Topological order from quantum loops and nets , 2008, 0804.0625.

[8]  J. Pachos,et al.  Why should anyone care about computing with anyons? , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  Zee,et al.  Chiral spin states and superconductivity. , 1989, Physical review. B, Condensed matter.

[10]  R. Laughlin,et al.  Equivalence of the resonating-valence-bond and fractional quantum Hall states. , 1987, Physical review letters.

[11]  Frank Wilczek,et al.  Quantum Mechanics of Fractional-Spin Particles , 1982 .

[12]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[13]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[14]  H. Weinfurter,et al.  Revealing anyonic features in a toric code quantum simulation , 2007, 0710.0895.

[15]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[16]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[17]  Sergey Bravyi Universal quantum computation with the v=5/2 fractional quantum Hall state , 2006 .

[18]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[19]  D. Perez-Garcia,et al.  Thermal states of anyonic systems , 2008, 0812.4975.

[20]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[21]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[22]  S. Iblisdir,et al.  Scaling law for topologically ordered systems at finite temperature , 2008, 0806.1853.

[23]  Lev B. Ioffe,et al.  Discrete non-Abelian gauge theories in Josephson-junction arrays and quantum computation , 2004 .

[24]  L. Georgiev Topologically protected gates for quantum computation with non-Abelian anyons in the Pfaffian quantum Hall state , 2006, cond-mat/0607125.

[25]  Jiannis K. Pachos,et al.  QUANTUM COMPUTATION WITH ABELIAN ANYONS ON THE HONEYCOMB LATTICE , 2005, quant-ph/0511273.

[26]  James R. Wootton,et al.  Non-Abelian statistics from an Abelian model , 2008, 0804.0931.

[27]  N. Read,et al.  Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect , 1999, cond-mat/9906453.

[28]  Otfried Gühne,et al.  Demonstrating anyonic fractional statistics with a six-qubit quantum simulator. , 2007, Physical review letters.

[29]  P. Zoller,et al.  A toolbox for lattice-spin models with polar molecules , 2006 .

[30]  J. Cirac,et al.  Simulations of quantum double models , 2009, 0901.1345.

[31]  Jiannis K. Pachos,et al.  Universal Quantum Computation with Abelian Anyon Models , 2009, QPL@MFPS.