Effects of in situ CO 2 enrichment on epibiont settlement on artificial substrata within a Posidonia oceanica meadow

[1]  K. Fabricius,et al.  Tropical CO2 seeps reveal the impact of ocean acidification on coral reef invertebrate recruitment. , 2017, Marine pollution bulletin.

[2]  J. Gattuso,et al.  Effects of in situ CO2 enrichment on Posidonia oceanica epiphytic community composition and mineralogy , 2017, Marine Biology.

[3]  J. Gattuso,et al.  Effects of in situ CO 2 enrichment on structural characteristics, photosynthesis, and growth of the Mediterranean seagrass Posidonia oceanica , 2016 .

[4]  S. Caut,et al.  Effects of fish predation on Posidonia oceanica amphipod assemblages , 2016 .

[5]  A. Paytan,et al.  Recruitment and Succession in a Tropical Benthic Community in Response to In-Situ Ocean Acidification , 2016, PloS one.

[6]  A. Rzhavsky,et al.  Tube morphology, ultrastructures and mineralogy in recent Spirorbinae (Annelida: Polychaeta: Serpulidae). II. Tribe Spirorbini , 2015 .

[7]  M. Graeve,et al.  Dominant amphipods of Posidonia oceanica seagrass meadows display considerable trophic diversity , 2015 .

[8]  Alan Gray,et al.  Don't let spurious accusations of pseudoreplication limit our ability to learn from natural experiments (and other messy kinds of ecological monitoring) , 2015, Ecology and evolution.

[9]  H. Lavigne,et al.  Seawater Carbonate Chemistry , 2015 .

[10]  E. L. Jackson,et al.  Use of a seagrass residency index to apportion commercial fishery landing values and recreation fisheries expenditure to seagrass habitat service , 2015, Conservation biology : the journal of the Society for Conservation Biology.

[11]  N. Kamenos,et al.  Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change , 2015, Journal of phycology.

[12]  V. Zupo,et al.  Indirect effects may buffer negative responses of seagrass invertebrate communities to ocean acidification , 2014 .

[13]  L. Hofmann,et al.  Ocean acidification effects on calcifying macroalgae , 2014 .

[14]  F. Ragazzola,et al.  Skeletal trade-offs in coralline algae in response to ocean acidification , 2014 .

[15]  W. Kirkwood,et al.  Free-ocean CO2 enrichment (FOCE) systems: present status and future developments , 2014 .

[16]  C. Lombardi,et al.  Settlement pattern of Posidonia oceanica epibionts along a gradient of ocean acidification: an approach with mimics , 2014 .

[17]  S. Vizzini,et al.  Trace element bias in the use of CO2 vents as analogues for low pH environments: Implications for contamination levels in acidified oceans , 2013 .

[18]  Atul K. Jain,et al.  Global Carbon Budget 2016 , 2016 .

[19]  M. Wahl,et al.  Differential Responses of Calcifying and Non-Calcifying Epibionts of a Brown Macroalga to Present-Day and Future Upwelling pCO2 , 2013, PloS one.

[20]  S. Comeau,et al.  Impacts of ocean acidification on marine shelled molluscs , 2013 .

[21]  Carlos M Duarte,et al.  Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming , 2013, Global change biology.

[22]  F. Micheli,et al.  Ocean acidification causes ecosystem shifts via altered competitive interactions , 2013 .

[23]  M. Koch,et al.  Climate change and ocean acidification effects on seagrasses and marine macroalgae , 2013, Global change biology.

[24]  J. Smith,et al.  Diel Variability in Seawater pH Relates to Calcification and Benthic Community Structure on Coral Reefs , 2012, PloS one.

[25]  O. Hoegh‐Guldberg,et al.  Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. , 2012, Ecology letters.

[26]  M. Steinke,et al.  Assessment of pH variability at a coastal CO2 vent for ocean acidification studies , 2011 .

[27]  F. Micheli,et al.  Divergent ecosystem responses within a benthic marine community to ocean acidification , 2011, Proceedings of the National Academy of Sciences.

[28]  J. Hall‐Spencer,et al.  Effects of ocean acidification on macroalgal communities , 2011 .

[29]  S. Dupont,et al.  What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification? , 2010 .

[30]  J. Hall‐Spencer,et al.  Effects of ocean acidification and high temperatures on the bryozoan Myriapora truncata at natural CO2 vents , 2010 .

[31]  J. Hall‐Spencer,et al.  Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents , 2010 .

[32]  C. Heip,et al.  Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis , 2010 .

[33]  Marc Picheral,et al.  Digital zooplankton image analysis using the ZooScan integrated system , 2010 .

[34]  C. Gobler,et al.  The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern oysters (Crassostrea virginica) , 2009 .

[35]  S. Dupont,et al.  Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? , 2009 .

[36]  W. Nelson Calcified macroalgae - critical to coastal ecosystems and vulnerable to change: a review , 2009 .

[37]  H. Kurihara Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates , 2008 .

[38]  J. Gattuso,et al.  Effects of naturally acidified seawater on seagrass calcareous epibionts , 2008, Biology Letters.

[39]  Emma Ransome,et al.  Volcanic carbon dioxide vents show ecosystem effects of ocean acidification , 2008, Nature.

[40]  F. Mackenzie,et al.  Ocean acidification and calcifying reef organisms: a mesocosm investigation , 2008, Coral Reefs.

[41]  F. Mackenzie,et al.  Decreased abundance of crustose coralline algae due to ocean acidification , 2008 .

[42]  C. Perry,et al.  Epiphytic calcium carbonate production and facies development within sub-tropical seagrass beds, Inhaca Island, Mozambique , 2005 .

[43]  F. Chapin,et al.  EFFECTS OF BIODIVERSITY ON ECOSYSTEM FUNCTIONING: A CONSENSUS OF CURRENT KNOWLEDGE , 2005 .

[44]  Richard A. Feely,et al.  Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans , 2004, Science.

[45]  Marti J. Anderson,et al.  CANONICAL ANALYSIS OF PRINCIPAL COORDINATES: A USEFUL METHOD OF CONSTRAINED ORDINATION FOR ECOLOGY , 2003 .

[46]  Lauri Oksanen,et al.  Logic of experiments in ecology: is pseudoreplication a pseudoissue? , 2001 .

[47]  J. Bouquegneau,et al.  Relative impact of a seagrass bed and its adjacent epilithic algal community in consumer diets , 2000 .

[48]  Vanina Pasqualini,et al.  Mapping ofPosidonia oceanicausing Aerial Photographs and Side Scan Sonar: Application off the Island of Corsica (France) , 1998 .

[49]  M. Gambi,et al.  Polychaete distribution, diversity and seasonality related to seagrass cover in shallow soft bottoms of the Tyrrhenian Sea (Italy)* , 1998 .

[50]  C. Duarte,et al.  The influence of herbivores on Posidonia oceanica epiphytes , 1997 .

[51]  V. Zupo,et al.  Depth and Seasonal Distribution of Some Groups of the Vagile Fauna of the Posidonia oceanica Leaf Stratum: Structural and Trophic Analyses , 1992 .

[52]  G. Edgar Population regulation, population dynamics and competition amongst mobile epifauna associated with seagrass , 1990 .

[53]  M. Buia,et al.  Spatio-temporal distribution of algal and animal communities in a Posidonia oceanica meadow , 1989 .

[54]  Robert J. Orth,et al.  Faunal communities in seagrass beds: A review of the influence of plant structure and prey characteristics on predator-prey relationships , 1984 .

[55]  S. Hurlbert Pseudoreplication and the Design of Ecological Field Experiments , 1984 .

[56]  Timothy A. Thoman,et al.  Experiments on predator-prey interactions in vegetated aquatic habitats , 1981 .

[57]  J. Milliman,et al.  Generic and Environmental Control of Carbonate Mineralogy in Serpulid (Polychaete) Tubes , 1973, The Journal of Geology.

[58]  S. Dupont,et al.  Ocean acidification can mediate biodiversity shifts by changing biogenic habitat , 2017 .

[59]  Christopher D G Harley,et al.  Ocean acidification through the lens of ecological theory. , 2015, Ecology.

[60]  W. Kirkwood,et al.  Free-ocean CO2 enrichment (FOCE) systems: present status and future developments , 2014 .

[61]  Corinne Le Quéré,et al.  Carbon and Other Biogeochemical Cycles , 2014 .

[62]  J. Schnoor Ocean acidification. , 2013, Environmental science & technology.

[63]  N. Bates Climate change and ocean acidification , 2011 .

[64]  R. Orth,et al.  Predation in Seagrass Beds , 2007 .

[65]  J. Bouquegneau,et al.  Biology of Posidonia , 2007 .

[66]  M. Mateo,et al.  Carbon flux in seagrass ecosystems , 2006 .

[67]  M. Mateo,et al.  Nutrient dynamics in seagrass ecosystems. , 2006 .

[68]  Robert J. Orth,et al.  Seagrasses: biology, ecology and conservation , 2006 .

[69]  J. Zieman,et al.  Total epiphyte and epiphytic carbonate production on Thalassia testudinum across Florida Bay , 1994 .