Induced neural phase precession through exogenous electric fields

[1]  M. Wischnewski,et al.  Neurocognitive, physiological, and biophysical effects of transcranial alternating current stimulation , 2022, Trends in Cognitive Sciences.

[2]  R. Reinhart,et al.  Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation , 2022, Nature Neuroscience.

[3]  Michael Hasselmo,et al.  Complementary representations of time in the prefrontal cortex and hippocampus , 2022, Hippocampus.

[4]  M. Wischnewski,et al.  A minimum effective dose for (transcranial) alternating current stimulation , 2022, Brain Stimulation.

[5]  Á. Pascual-Leone,et al.  Increasing Brain Gamma Activity Improves Episodic Memory and Restores Cholinergic Dysfunction in Alzheimer's Disease , 2022, Annals of neurology.

[6]  Matthew R. Krause,et al.  Brain stimulation competes with ongoing oscillations for control of spike timing in the primate brain , 2022, PLoS biology.

[7]  M. Hallett,et al.  Transcranial magnetic stimulation of the brain: What is stimulated? – A consensus and critical position paper , 2022, Clinical Neurophysiology.

[8]  M. Wischnewski,et al.  The phase of sensorimotor mu and beta oscillations has the opposite effect on corticospinal excitability , 2022, Brain Stimulation.

[9]  M. Wischnewski,et al.  Behavioral and electrocortical effects of transcranial alternating current stimulation during advice-guided decision-making , 2021, Neuroimage: Reports.

[10]  A. Opitz,et al.  Multi-scale modeling toolbox for single neuron and subcellular activity under Transcranial Magnetic Stimulation , 2021, Brain Stimulation.

[11]  A. Peterchev,et al.  Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform , 2021, Nature Communications.

[12]  P. König,et al.  Spike-timing-dependent plasticity can account for connectivity aftereffects of dual-site transcranial alternating current stimulation , 2021, NeuroImage.

[13]  J. Riddle,et al.  Conducting double-blind placebo-controlled clinical trials of transcranial alternating current stimulation (tACS) , 2021, Translational Psychiatry.

[14]  R. Polanía,et al.  Toward integrative approaches to study the causal role of neural oscillations via transcranial electrical stimulation , 2021, Nature Communications.

[15]  C. Barry,et al.  Ripple band phase precession of place cell firing during replay , 2021, Current Biology.

[16]  A. Opitz,et al.  Effects of transcranial alternating current stimulation on spiking activity in computational models of single neocortical neurons , 2021, NeuroImage.

[17]  Salman E Qasim,et al.  Phase precession in the human hippocampus and entorhinal cortex , 2020, Cell.

[18]  Steen Moeller,et al.  An 8 Dipole Transceive and 24 Loop Receive Array for Non-Human Primate Head Imaging at 10.5T , 2020, bioRxiv.

[19]  M. Carandini,et al.  Mouse Visual Cortex Is Modulated by Distance Traveled and by Theta Oscillations , 2020, Current Biology.

[20]  Gesa Hartwigsen,et al.  Inferring Causality from Noninvasive Brain Stimulation in Cognitive Neuroscience , 2020, Journal of Cognitive Neuroscience.

[21]  Zuoren Wang,et al.  Spike Phase Shift Relative to Beta Oscillations Mediates Modality Selection. , 2020, Cerebral cortex.

[22]  Noam Harel,et al.  Ultra-high field (10.5 T) resting state fMRI in the macaque , 2020, NeuroImage.

[23]  M. Wischnewski,et al.  Frontal Beta Transcranial Alternating Current Stimulation Improves Reversal Learning , 2020, Cerebral cortex.

[24]  W. Paulus,et al.  Model-driven neuromodulation of the right posterior region promotes encoding of long-term memories , 2019, Brain Stimulation.

[25]  Cory T. Miller,et al.  Spatial encoding in primate hippocampus during free navigation , 2019, PLoS biology.

[26]  Alexander Opitz,et al.  Experimental evaluation of methods for real-time EEG phase-specific transcranial magnetic stimulation , 2019, bioRxiv.

[27]  Marcus T. Wilson,et al.  Modeling motor-evoked potentials from neural field simulations of transcranial magnetic stimulation , 2019, Clinical Neurophysiology.

[28]  Kristoffer Hougaard Madsen,et al.  Electric field simulations for transcranial brain stimulation using FEM: an efficient implementation and error analysis , 2019, Journal of neural engineering.

[29]  M. Wischnewski,et al.  Effects of beta-tACS on corticospinal excitability: A meta-analysis , 2019, Brain Stimulation.

[30]  J. Gross,et al.  A New Unifying Account of the Roles of Neuronal Entrainment , 2019, Current Biology.

[31]  Alexander Opitz,et al.  Dose-dependent effects of transcranial alternating current stimulation on spike timing in awake nonhuman primates , 2019, Science Advances.

[32]  Matthew R. Krause,et al.  tACS entrains neural activity while somatosensory input is blocked , 2019, bioRxiv.

[33]  Wilten Nicola,et al.  A diversity of interneurons and Hebbian plasticity facilitate rapid compressible learning in the hippocampus , 2019, Nature Neuroscience.

[34]  Jessy K. Possel,et al.  Theta-phase dependent neuronal coding during sequence learning in human single neurons , 2019, Nature Communications.

[35]  Á. Pascual-Leone,et al.  Clinical utility and prospective of TMS–EEG , 2019, Clinical Neurophysiology.

[36]  J. Rothwell,et al.  Direction of TDCS current flow in human sensorimotor cortex influences behavioural learning , 2019, Brain Stimulation.

[37]  Praveen K. Pilly,et al.  Transcranial alternating current stimulation entrains single-neuron activity in the primate brain , 2019, Proceedings of the National Academy of Sciences.

[38]  R. Reinhart,et al.  Working memory revived in older adults by synchronizing rhythmic brain circuits , 2019, Nature Neuroscience.

[39]  B. Asamoah,et al.  tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves , 2019, Nature Communications.

[40]  W. Grill,et al.  Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons , 2018, Brain Stimulation.

[41]  Matthew R. Krause,et al.  Immediate neurophysiological effects of transcranial electrical stimulation , 2018, Nature Communications.

[42]  W Pieter Medendorp,et al.  Corticospinal correlates of fast and slow adaptive processes in motor learning. , 2018, Journal of neurophysiology.

[43]  A. Chiba,et al.  Multiplexed oscillations and phase rate coding in the basal forebrain , 2018, Science Advances.

[44]  M. Wischnewski,et al.  NMDA Receptor-Mediated Motor Cortex Plasticity After 20 Hz Transcranial Alternating Current Stimulation. , 2018, Cerebral cortex.

[45]  M. Wischnewski,et al.  After-effects of transcranial alternating current stimulation on evoked delta and theta power , 2017, Clinical Neurophysiology.

[46]  R. Reinhart Disruption and rescue of interareal theta phase coupling and adaptive behavior , 2017, Proceedings of the National Academy of Sciences.

[47]  P. Brown,et al.  Modulation of Long-Range Connectivity Patterns via Frequency-Specific Stimulation of Human Cortex , 2017, Current Biology.

[48]  J. Rothwell,et al.  tDCS changes in motor excitability are specific to orientation of current flow , 2017, Brain Stimulation.

[49]  R. Kempter,et al.  Phase precession: a neural code underlying episodic memory? , 2017, Current Opinion in Neurobiology.

[50]  M. Wischnewski,et al.  Effects of Theta Transcranial Alternating Current Stimulation Over the Frontal Cortex on Reversal Learning , 2016, Brain Stimulation.

[51]  Walter Paulus,et al.  Spatial Working Memory in Humans Depends on Theta and High Gamma Synchronization in the Prefrontal Cortex , 2016, Current Biology.

[52]  C. Herrmann,et al.  Sustained Aftereffect of α-tACS Lasts Up to 70 min after Stimulation , 2016, Front. Hum. Neurosci..

[53]  M. Wischnewski,et al.  Demand on skillfulness modulates interhemispheric inhibition of motor cortices. , 2016, Journal of neurophysiology.

[54]  Bettina Pollok,et al.  Beta Band Transcranial Alternating (tACS) and Direct Current Stimulation (tDCS) Applied After Initial Learning Facilitate Retrieval of a Motor Sequence , 2016, Front. Behav. Neurosci..

[55]  Joël M. H. Karel,et al.  Quantifying Neural Oscillatory Synchronization: A Comparison between Spectral Coherence and Phase-Locking Value Approaches , 2016, PloS one.

[56]  V. Krause,et al.  The effect of transcranial alternating current stimulation (tACS) at alpha and beta frequency on motor learning , 2015, Behavioural Brain Research.

[57]  P. Fries Rhythms for Cognition: Communication through Coherence , 2015, Neuron.

[58]  N. Brüggemann,et al.  Premotor–motor excitability is altered in dopa‐responsive dystonia , 2015, Movement disorders : official journal of the Movement Disorder Society.

[59]  Mayank R Mehta,et al.  From synaptic plasticity to spatial maps and sequence learning , 2015, Hippocampus.

[60]  C. Koch,et al.  Ephaptic coupling to endogenous electric field activity: why bother? , 2015, Current Opinion in Neurobiology.

[61]  S. Romani,et al.  Short‐term plasticity based network model of place cells dynamics , 2015, Hippocampus.

[62]  Mayank R Mehta,et al.  Impaired spatial selectivity and intact phase precession in two-dimensional virtual reality , 2014, Nature Neuroscience.

[63]  Domenico Tegolo,et al.  Effects of low frequency electric fields on synaptic integration in hippocampal CA1 pyramidal neurons: implications for power line emissions , 2014, Front. Cell. Neurosci..

[64]  Xinyu Liu,et al.  Quality Metrics of Spike Sorting Using Neighborhood Components Analysis , 2014, The open biomedical engineering journal.

[65]  I. Fiete,et al.  A Model of Grid Cell Development through Spatial Exploration and Spike Time-Dependent Plasticity , 2014, Neuron.

[66]  Jochen Triesch,et al.  A Model of TMS-induced I-waves in Motor Cortex , 2014, Brain Stimulation.

[67]  A. Schnitzler,et al.  Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson’s disease , 2014, Front. Hum. Neurosci..

[68]  Stefano Panzeri,et al.  Modelling and analysis of local field potentials for studying the function of cortical circuits , 2013, Nature Reviews Neuroscience.

[69]  Alexander Opitz,et al.  Electric field calculations in brain stimulation based on finite elements: An optimized processing pipeline for the generation and usage of accurate individual head models , 2013, Human brain mapping.

[70]  P. Brown,et al.  Tremor Suppression by Rhythmic Transcranial Current Stimulation , 2013, Current Biology.

[71]  Vincenzo Di Lazzaro,et al.  The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex , 2013, Front. Neural Circuits.

[72]  M. Nitsche,et al.  The Importance of Timing in Segregated Theta Phase-Coupling for Cognitive Performance , 2012, Current Biology.

[73]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[74]  Ethan R. Buch,et al.  Rewiring the Brain , 2012, Neurorehabilitation and neural repair.

[75]  Matthijs A. A. van der Meer,et al.  Theta phase precession beyond the hippocampus , 2012, Reviews in the neurosciences.

[76]  Christof Koch,et al.  Ephaptic coupling of cortical neurons , 2011, Nature Neuroscience.

[77]  Walter Paulus,et al.  Contribution of the premotor cortex to consolidation of motor sequence learning in humans during sleep. , 2010, Journal of neurophysiology.

[78]  A. Berardelli,et al.  Dopamine influences primary motor cortex plasticity and dorsal premotor-to-motor connectivity in Parkinson's disease. , 2010, Cerebral cortex.

[79]  D. McCormick,et al.  Endogenous Electric Fields May Guide Neocortical Network Activity , 2010, Neuron.

[80]  S. Otani,et al.  Functional and Dysfunctional Synaptic Plasticity in Prefrontal Cortex: Roles in Psychiatric Disorders , 2010, Biological Psychiatry.

[81]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[82]  P. Strick,et al.  Subdivisions of primary motor cortex based on cortico-motoneuronal cells , 2009, Proceedings of the National Academy of Sciences.

[83]  Henry Markram,et al.  Minimal Hodgkin–Huxley type models for different classes of cortical and thalamic neurons , 2008, Biological Cybernetics.

[84]  T. Hafting,et al.  Hippocampus-independent phase precession in entorhinal grid cells , 2008, Nature.

[85]  Richard Kempter,et al.  Phase Precession Through Synaptic Facilitation , 2008, Neural Computation.

[86]  Warren M Grill,et al.  Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation , 2008, Journal of neural engineering.

[87]  Abhishek Datta,et al.  In vitro modulation of endogenous rhythms by AC electric fields: Syncing with clinical brain stimulation , 2007, The Journal of physiology.

[88]  J. Deans,et al.  Sensitivity of coherent oscillations in rat hippocampus to AC electric fields , 2007, The Journal of physiology.

[89]  M. Hallett Transcranial Magnetic Stimulation: A Primer , 2007, Neuron.

[90]  P. Dayan,et al.  Matching storage and recall: hippocampal spike timing–dependent plasticity and phase response curves , 2005, Nature Neuroscience.

[91]  R. Quian Quiroga,et al.  Unsupervised Spike Detection and Sorting with Wavelets and Superparamagnetic Clustering , 2004, Neural Computation.

[92]  G. Buzsáki,et al.  Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells , 2002, Nature.

[93]  K. Zilles,et al.  Functional neuroanatomy of the primate isocortical motor system , 2000, Anatomy and Embryology.

[94]  J C Rothwell,et al.  I-Waves in Motor Cortex , 2000, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[95]  M. Hines,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[96]  A. Schleicher,et al.  Two different areas within the primary motor cortex of man , 1996, Nature.

[97]  T. Sejnowski,et al.  Influence of dendritic structure on firing pattern in model neocortical neurons , 1996, Nature.

[98]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[99]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[100]  P. Strick,et al.  Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized ‘premotor’ areas , 1979, Brain Research.

[101]  OUP accepted manuscript , 2021, Brain.